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ABSTRACT Medical datasets frequently include vast feature sets with numerous features that are related
to one another. As a result, the curse of dimensionality affects learning from a medical dataset to discover
significant characteristics, making it necessary to minimize the feature set. Feature selection (FS) is a major
step in classification and also in reducing the dimension. This study attempts a novel Binary Multi-objective
Chimp Optimization Algorithm (BMOChOA) with dual archive and k-nearest neighbors (KNN) classifier
for mining relevant aspects from medical data. In this research, 12 versions of BMOChOA are implemented
based on the group information and types of chaotic functions used. The best Pareto front obtained from
suggested BMOChOA variations is compared with three benchmark multi-objective FS methods by taking
14 popular medical datasets of variable dimensions. By analyzing the experimental outputs using four
multi-objective performance evaluators, it is found that the proposed FS method is superior in finding the
best trade-off between the two objective functions: the number of features and classification performance.

INDEX TERMS Chimp optimization, classification, healthcare, data mining, feature selection,
multi-objective.

I. INTRODUCTION
The relevance of the diagnosis is known to all professionals.
Timely and effective diagnostic treatment can save patients’
lives, so it’s necessary to have proper computer aided
diagnostic (CAD) systems that doctors can use. In general,
classification is the most important aspect of CAD systems.
A vast amount of observations, mostly electronic health
records (EHRs), are collected in the medical sector [1].
Nowadays, machine learning is becoming more common
in healthcare. Because of the complex nature and size of
data, the huge quantity of data created by Electronic Data
Interchange (EDI) clinical transactions cannot be handled and
evaluated by conventional techniques. Classifying medical
data sets is a difficult challenge because they frequently
contain many attributes and examples. The need for rapid
and precise diagnosis is a consequence of the search for
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more correct and faster categorization methods in CAD
systems [2]. The classification precision depends greatly
on the chosen feature set to allow classification methods
to distinguish instances and detect similarities between
examples of the same class. Noisy, duplicated, and irrelevant
characteristics may also be present in high-dimensional
medical data. These properties lead to unfavorable impacts on
the learning process and on the efficiency of categorization
by widening the search area too much. This idea is often
called the ‘‘curse of dimensionality’’. There is, thus, high
computation, sophisticated models, and extremely long
learning times required for analysis and data mining [1].

The application of FS methods is one of the most effective
answers to this problem [3]. FS techniques tend to pick a
subset of highly significant features by removing or reduc-
ing duplicate and unnecessary characteristics. Therefore,
FS techniques can lead to improved data understanding,
reduced learning time, and simplified prediction models with
potentially improved performance [4]. Because of its vast
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search area and the intricate connections between features,
FS is a complicated process. Searching techniques for
identifying subsets of optimum features in an L-dimensional
data set necessitate the inclusion of 2L subsets from the
combination of characteristics, making searching for big
L extremely difficult. Thus, the FS issue is characterized as
an NP-Hard task [5].

FS methods are classified mostly into wrapper, filter, and
embedding techniques [6]. Our emphasis in this study is
on wrapper processes. The FS process includes a search
process for the quasi-optimal feature subsets and a prediction
system for the wrapping technique [7]. Wrapper techniques
give superior outcomes than filter approaches, but due
to the continuous learning of the classification algorithm,
these strategies take longer than the filter techniques [8].
By contrast, filter strategies are based on statistical methods
and theories of information and attempt to recognize a near-
optimal sub-string of characteristics having the strongest
individual association with the result and the lowest inner
correlation [6]. Furthermore, embedded methods are aimed
at integrating the FS phase into the training phase of the
classification [9]. Use of the wrapper techniques such as
greedy search alternatives like sequential forward selection
(SFS) [10] and sequential backward selection [11] tool have
been published to datewith numerous solutions to the FS task.
These strategies do, however, have shortcomings such as slow
convergence, optimal local trapping, and are computationally
costly [12].

Approaches based on evolutionary algorithms were
proposed to overcome the limitations described above.
These architectures can identify more optimum solutions
than greedy methods because of the population-based and
improved global search capabilities. The genetic algo-
rithm (GA) is utilized for the resolution of the FS issue in
numerous research studies as a well-known metaheuristic
method [13]–[16]. Moreover, other algorithms such as Grey
Wolf Optimization (GWO) [17], Harris Hawk Optimizer
(HHO) [18]–[20], Forest Optimizer (FO) [3], Dragonfly
Algorithm (DA) [21], Jaya optimization method [22], Bac-
teria foraging method [23], spider monkey optimization [24],
spotted hyena method [25], salp swarm algorithm [26], ant
lion optimizer [27], and teaching-learning optimization [28]
etc., have been employed to tackle FS tasks.

In principle and practice, the utilization of population-based
research and the production of various unique solutions
might make evolutionary algorithms suited to resolve
multi-objective issues. Due to its structural character,
FS may be classified as a multi-objective optimization
problem (MOP), given that it takes account of at least
two conflicting objectives. MOPs are generally supported
by a number of non-dominated (ND) solutions which
represent a compromise between opposing aims, providing
various options for decision-makers. In addition, the FS
was examined in many objectives compared to the single
objective state in a small number of ways, according to related
research [29], [30].

The Chimp Optimizing Algorithm (ChOA) is one of
the advanced metaheuristic technique developed for the
resolution of optimization issues. According to prior studies,
this technique has properties such as low feature assessment,
high-speed, and excellent global and local discovery [31],
[32]. The capacity of this method for handling the FS
assignment has yet to be explored to the best of our
understanding.

This article aims mainly to build a ChOA-formed multi-
objective wrapper FS technique with dual archive, which
can concurrently decrease the amount of features and
boost the classification performance, and provide a set of
Pareto solutions. Because FS is a multi-target optimization
problem, we propose for the first time a binary variant
of Multi-objective ChOA called Binary Multi-Objective
Chimp Optimization with a Sigmoid Transfer Function
(BMOChOA-S).

In particular, the following goals have been examined in
this article.

1) To gain insight into the strengths and weaknesses of
recent works on metaheuristic-based FS tasks.

2) To introduce a BMOChOA-S to discover Pareto
optimum solutions for the FS work.

3) To present a comparative analysis report on the
performance of the BMOChOA towards the FS task
considering healthcare data, by implementing twelve
different variants of BMOChOA depending on the
chimp group and the type of chaotic map used.

4) To evaluate the suggested technique with three
well-considered multi-target approaches and examine
whether the strategy proposed outweighs bench-
marking methodologies for limiting the length of
feature subset and increasing the classification
accuracy.

5) To confirm the performance of the presented technique
in terms of computational cost.

The structure of this article is organized accordingly.
In Section II, we discuss the ChOA algorithm, themulti-target
optimization idea, and current FS experiments. The suggested
multi-target technique is explained in Section III. Section IV
shows the experimental set-ups. Section V fully describes
the results and comments. Finally, the last part provides the
conclusion and suggests future guidelines for work.

II. BACKGROUND
First, the basic ChOA principles and multi-objective opti-
mization techniques are outlined in this part. Then, a sum-
mary of significant work done in the FS world is presented.

A. ChOA
ChOA’s conceptual foundation is based on chimpanzees’
hunting habits. The standard ChOA separates the chimp
group into four types: attacker, barrier, chaser, and driver. The
attacker is the leader among them. The other three varieties
of chimpanzees helped to hunt, which in turn reduced their
status. Drivers track the prey but do not try to arrest themwith
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it. Barriers are placed in trees to construct a dam covering the
movement of the prey. Chasers move to catch it quickly after
the prey. In the end, the attackers predict the break-out course
of the prey towards the chasers or down to the lower canopy.
This crucial job (attack) has a favourable correlation with
age, intelligence, and physical capacity. In addition, during
the same hunt, chimps might swap responsibilities or retain
their jobs over the whole procedure [33]. Broadly speaking,
the technique of chimp hunting is separated into two major
phases: exploration (driving, jamming, and chasing the prey)
and exploitation (attacking the prey).

Mathematically, the two phases are described below:

1) DRIVING AND CHASING THE PREY
In the exploration and development phase, the prey is
pursued. Eqs. 1 and 2 are used for mathematical modelling
of driving and tracking prey.

b =
∣∣c3Pprey (CI )− c2Pchimp (CI )∣∣ (1)

Pchimp (CI + 1) = Pprey (CI )− c1.b (2)

Here, CI : the current iteration count, c1, c2, and c3: the
coefficient vectors, Pprey: the prey’s position, Pchimp: chimp’s
position. c1, c2, and c3 vectors are calculated by the Eqs. (3)
– (5), respectively.

c1 = 2 · f · rnd1− f (3)

c2 = chaotic value (4)

c3 = 2 · rnd2 (5)

rnd1 and rnd2 are the random vectors ε [0, 1] and c2 is a
chaotic vector computed on the basis of several chaotic maps
to show the influence of chimps’ sexual drive on the hunting
progression.

Hypothetically, separate independent groups with a shared
purpose may be utilized in each population-based optimiza-
tion method to provide a direct and random search result
simultaneously. Any continuous function can be taken out
to update distinct chimp groups. These functions have to be
selected such that f is decreased throughout each run [34].
The procedure of driving and chasing the prey is pictorially
shown in FIGURE 1 [31].

2) ATTACKING (EXPLOITATION)
The process of hunting is generally done by attackers. Occa-
sionally, drivers, barriers, and chasers take part in hunting.
Apparently, there is no information regarding the optimal
position in a conceptual search area. To mathematically
replicate the behaviour of chimps, the initial attacker (the
best solution), driver, barrier, and chaser are better informed
about the status of the prospective prey. So four of the best
yet achieved solutions are kept, and the other chimps need
to change their spots according to the ideal chimp positions.
This is expressed as follows:

c11 = 2 · f 1 · rnd1− f 1

c12 = 2 · f 2 · rnd1− f 2

FIGURE 1. Driving and chasing the prey [31].

c13 = 2 · f 3 · rnd1− f 3

c14 = 2 · f 4 · rnd1− f 4 (6)

bAttacker =
∣∣c3 · PAttacker (CI )− c2 · Pchimp(CI )∣∣

bBarrier =
∣∣c3 · PBarrier (CI )− c2 · Pchimp(CI )∣∣

bChaser =
∣∣c3 · PChaser (CI )− c2 · Pchimp(CI )∣∣

bDriver =
∣∣c3 · PDriver (CI )− c2 · Pchimp(CI )∣∣ (7)

P1(CI + 1) = PAttacker (CI )− c11 · bAttacker
P2(CI + 1) = PBarrier (CI )− c12 · bBarrier
P3(CI + 1) = PChaser (CI )− c13 · bChaser
P4(CI + 1) = PDriver (CI )− c14 · bDriver (8)

Pchimp(CI + 1) =
P1+ P2+ P3+ P4

4
(9)

Here, CI is the current iteration. The dynamic coefficient
c1 and vector b are computed using eq 6 and 7. With the
passage of repetition, f drops non-linearly from 2.5 to 0.
The dynamic coefficients for f taking two distinct versions
of ChOA (ChOA1 and ChOA2) with various independent
groups are given in APPENDIX VI [31].

B. MULTI-OBJECTIVE OPTIMIZATION (MOP)
Many real-world tasks generally consist of a group of goals
that must be optimized at the same time. The solution to
these problems is a series of solutions that really represent a
compromise between distinct objectives. The set containing
all the trade-off solutions to a given problem is called the
Pareto optimal set or Pareto front. Mathematically,

max fk (z), k = 1, 2, . . . . . . ,K

min hl(z), l = 1, 2, . . . . . . ,L

Subject to : gm(z) ≥ 0, m = 1, 2, . . . .,M
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en(z) = 0, n = 1, 2, . . . ,N

zilb ≤ zi ≤ ziub

For a single objective optimization problem (SOP),
a candidate’s superiority in relation to other solutions is
determined via a fitness comparison. The merit of a candidate
solution is nonetheless judged in MOP by the concept
of dominance. A solution P in the objective space of a
C-objective problem dominates another solution Q if the
following two criteria are true:

1) ∀C : P is not worse than Q
2) ∃c : c ε C and Pc is strictly better than Qc

C. RELATED WORKS
In practice, FS methods are divided into three primary types:
embedded, filter, and wrapper. However, our concentration
is on a wrapper-based approach. Wrapper techniques utilize
a search procedure to discover almost optimal solutions
and a classifier for rating the solutions that have been
identified. Thus, wrapper methods may be subdivided into
two: evolutionary and non-evolutionary groups based on the
type of search strategy. Branch & Bound [35], SFS [10]
and SBS [11] might be considered among the most well-
known non-evolutionary solutions. Although these methods
may be implemented relatively simply, they struggle with
issues including convergence to local optimums and with
substantial computing overheads for huge data. Structural
failure also occurs in both SFS as well as SBS techniques;
thus, the following stepsmay not remove (add) features which
have previously been included (excluded) from the set [6].
Sequential Floating Selection (SFFS) and Sequential Back-
ward Floating Selection (SBFS) were developed to tackle
this issue [36]. Unfortunately, advancements in thesemethods
have not solved the convergence problem to the optimal local
level [37]. We might refer to Focus [37] and Relief [38] as
two of many non-evolutionary filtering approaches. Filter
processes such as mRmR [39] or MIFS [40] also attempt
to enhance the efficiency of the FS algorithm by applying
information theory ideas. This improvement is obtained by
looking at the relevancy of an attribute to the outcome and
any duplication among the characteristics.

Researchers used evolutionary techniques to resolve the
difficulties described above and to apply better search
strategies. These algorithms create and assess numerous
solutions concurrently because they are population-based
and have better global discovery than traditional approaches.
Single objective wrapper techniques generally serve the
purpose by restricting the length of the feature set, or by
enhancing the classification efficiency, or by aggregating
these targets [41]. For a better understanding of the
single-objective evolutionary methods for solving FS task
the interested reader can refer to DA [21], SSA [26], [42],
HS [43], TLBO [28], grasshopper optimization [44], Jaya
algorithm [22], [45], HHO [18], atom search [46], SMO [24],
SHO [25], CS [47], ALO [48], ABC [30], FOA [49],
FPA [50], and WOA [51], [52] etc.

The excellent quality of any meta-heuristic methodology
is focused and constrained. Exploration and exploitation are
two opposing conditions to be considered when developing
meta-heuristics. The meta-heuristic algorithms perform well
in some cases but poorly in others, so it is critical to strike a
reasonable balance between exploration and exploitation to
improve the algorithms’ efficiency. Each nature-influenced
methodology has its own positive and negative aspects,
such that the right algorithm for a particular problem is
not guaranteed. We cannot find the optimal solution for
each kind of function with the individual optimization
algorithm [53]. The implementation and proposal of modern
meta-heuristics with high precision for actual implementa-
tions has therefore become a challenge to scientists, [54].
As a result, the hybridization of evolutionary methods has
engaged many research people to solve FS problems. The
aim of hybridization is to identify compatible alternatives
in order to ensure the optimal output of optimization
methods, which is accomplished by combining and coor-
dinating the exploration and exploitation processes [55].
Hybridization of evolutionary methods is a common method
for combining the strengths of independent architectures to
address such shortcomings [54]. Some recently suggested
hybrid evolutionary techniques for handling FS task are:
ABC-GA [56], MA-HS [57], PSO-GE [58], GWO-PSO [41],
TEO-SOA [59], GWO-CSA [60], PSO-FLA [61], SCA-
ALO [62], TLBO-SSA [63], HHO-CS [64], SCA-HHO [65],
GWO-HHO [66], and SCA-CS [67] etc.

The ChOA has been proposed recently to solve different
optimization tasks [31]. ChOA is meant to mitigate two
challenges in the resolution of high-dimensional issues: poor
convergence speed and entrapment in the local optimum.
Jia et al. [32] in 2021 have attempted an enhanced ChOA
for solving optimization problems in the continuous domain.
Gaurav Dhiman has suggested a fusion of SSA and SHO
based ChOA for tackling the optimization applications
in engineering [68]. Also, a hybrid SCA-ChOA method
is proposed by Kaur et al. [69] for HLS of datapaths in
digital filters and engineering applications. To the best
of our knowledge, no work exists in the literature for
discrete ChOA in order to find solutions to problems
like feature selection. For the first time, we proposed a
discrete version of the ChOA with a multi-objective essence
for selecting relevant factors from variable sized healthcare
data.

It is noticeable that these strategies provide one almost
optimum result using single target techniques. However,
the FS is fundamentally a MOP that attempts to achieve
at least two opposing goals: to reduce the number of
characteristics and to increase the efficiency of the clas-
sification. In these cases, the true response is for clients
to provide a number of non-dominated (ND) alternatives
to choose solutions which are suitable to their circum-
stances. We will look at the multi-objective techniques
offered to the FS issue in the following part of this
article.
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In the past few years, multi-objective heuristics have been
the focus of significant investigation due to the simultaneous
evaluation of many typically conflicting objectives and the
presentation of a series of ND solutions. In the study [70],
the GA and non-domination concepts were used to address
the FS issue with the NPGAmulti-objectivemethod. NSGA-I
was used in [14] to take into account the aims of lowering the
number of characteristics and decreasing the artificial neural
network’s classification error. Zhu et al. [71] have introduced
a hybrid filter and wrapper procedure utilizing a mimetic
method using a filter process to enhance wrapper MOEA
solutions by the addition/removal of features depending
on correlation condition. Huang et al. [72] in 2010 have
sought to locate the Pareto front using the NSGA-II method.
The MOPSO method was used to FS in the studies by
Xue et al. [12]. Vignolo et al. [73] have introduced a novel
MOGA-based method for FS in the face recognition domain.
Three major goals are considered here: 1) increasing accu-
racy, 2) decreasing the number of characteristics, and 3) lim-
iting mutual information (MI). In Ref [74], a multi-objective
FS (DEMOFS) method employing differential evolution was
presented. In Ref [75], where the accuracy of every class is
treated as a cost function, the NSGA-II wrapper methodology
was introduced. The study in Ref [76] investigates the
MOFS-BDE, a novel multi-objective FS strategy that incor-
porates three operators: a unique binary mutation operator,
a One-bit purifying Search operator, and a fast non-dominated
sorting operator to increase performance. Zhang et al. [77]
have suggested the first work of multi-objective PSO with
Pareto dominance and an external repository for cost-based
FS problems. The PSOMOFS, presented by Hu et al. [78]
is a fuzzy multi-objective FS approach with PSO to solve
the FS issue with fuzzy costs. To trim the elitist repository,
this technique provides a fuzzy dominance relation to
check the excellence of nominee particles and sets a fuzzy
crowding distance (CD) metric to discover the global leader.
In Ref [79], an innovative MOPSO technique was presented
for addressing the FS challenge by using local search to
enhance the repository solutions. An enhanced MOPSO
technique is proposed in Ref [80] that utilizes t-score
and precision as goal functions. Ragothaman and Saro-
jini [81] have tried to address the FS problem on healthcare
datasets using a MOABC inspired by non-dominated sorting.
Jimenez et al. [82] utilized the ENORA technique, which
applied dominance and slot principles to identify the Pareto
front in order to pick parameters in the online sales prediction
method. In the article [30], the FS problem was solved using
a multi-target ABC approach. In Ref [83], a mixed MO
approach built on the SSA and the SHO has been proposed
for FS. This approach prefers to mix SSA and SHO to
balance variability and convergence to obtain the best Pareto
front. The NSGA-II method-based hybrid filter wrapper
was developed in the work [84]. Baliarsingh et al. [85] used
a fisher score technique together with a multi-objective
Penguin Optimizer. Numerous recent research papers, such
as [86]–[88], are concurrently working on resolving the

FS issue and optimizing the classifier’s parameters. For
example, [86] utilized MOPSO to fulfil three objectives:
optimizing the settings of SVM, choosing a kernel function,
and also picking the right characteristics. A unique method
using the multi-objective Grey Wolf optimizer (MOGWO)
was introduced byAl-Tashi et al. [17] in 2020. The technique
presented employs the repository to preserve non-dominated
alternatives. Recently, in 2021, Piri et al. [20] have suggested
a MO quadratic binary harris hawk optimizer for selecting
required features from 12 medical datasets. Also, they have
proved the superiority of the proposed technique by compar-
ing the results with deep-based FS methods such as AE and
TSFS. Amulti-objective FOA has been introduced in the arti-
cle [3] for tackling the FS task. When the depth of FS issues
grows, the solution space grows exponentially, resulting in
a large number of local optima. As a result, for large-scale
FS issues, present evolutionary approaches still suffer from
the problem of local optima stagnation. To address this,
Xue et al. [89] have presented a self-adaptive PSO (SaPSO)
method for FS, specifically for widescale data. To cope with
high-dimensional FS challenges, Song et al. [90] have pre-
sented an innovative FS technique called ‘‘bare bones PSO’’
(BBPSO), integrating mutual information. They additionally
devised a successful swarm initialization technique based on
correlation in order to hasten swarm convergence. Also, the
authors in Ref [91] have developed a novel three-phase hybrid
FS method based on correlation-guided clustering and PSO
for large dimensional data.

Most prior research has employed single objective evolu-
tionary algorithms to address the FS issue, as can be observed
from the literature, whereas few studies have concentrated on
MOFS techniques compared to the other methods. Moreover,
the effectiveness of the ChOA to solve MOPs has yet to
be studied given the potential functionalities of ChOA, such
as the ease of operators, the reduced number of fitness
assessments, and the small number of parameters. Therefore,
in this article, we suggest the BMOChOAmethod to solve the
FS issue.

III. PROPOSED METHODOLOGY
As per the study in the previous part, the FS is a MOP
that may intrinsically address at least two goals. That
is, to limit the count of characteristics and boost the
accuracy of classification. The binary version of ChOA
to resolve discrete optimization problems like FS has not
been established yet. Furthermore, no implementation of
ChOA to address FS as MOP in the existing work has yet
been suggested. This portion thus contains a Binary Multi-
Objective ChOA (BMOChOA) to tackle the FS problem for
the first time in healthcare data mining. FIGURE 2 shows
the overall design of the presented BMOChOA-based FS job.
In the following, FS is regarded as a binary optimization
task in the context of a 0/1 or discrete presentation of
candidate solutions. The ChOA is not directly suited to the
FS challenge, as it aims to solve the problem of continuous
optimization.
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FIGURE 2. Working procedure of the proposed BMOChOA.

In order to attain the aim, various changes are thus
necessary:

1) Representation of chimp: Each chimp location in
BMOChOA is represented as a vector of length L,
consisting of only 0s and 1s. If a particular bit
value in the nominee position vector is 1, then the
corresponding feature is considered to form the reduced
dataset, otherwise not. The pictorial representation of
the structure of each chimp’s location is shown in
FIGURE 2.

2) Fitness Assessment: This research considers FS as
a bi-objective optimization problem. Therefore, each
chimp in the population is evaluated by applying the
following two goal functions:

Obj1(P) =
L∑
j=1

pj, if pj = 1 (10)

where P is the location string of a chimp of length L.

Obj2(P) = Classification Accuracy

=
TPS + TNS

TPS + TNS + FPS + FNS
(11)

Here, TPS: True +ves, TNS: True –ves, FPS: False
+ves, and FNS: False –ves [92].
The following procedures are taken to calculate the
objective function Obj2 for each chimp:
• First, a compressed data set is formed by taking
the characteristics from those indices of the chimp
location string where the value is 1.

• Then the KNNmodel with a 10-fold CV is applied
to compute the Obj2 value of each chimp. For
training and testing, the total samples of a dataset
are randomly split into 10 groups.

3) Maintenance of Primary Archive: The primary
archive must be updated following evaluations of each
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FIGURE 3. Archive management.

chimp in the swarm because, after completion of
each iteration, the BMOChOA provides a collection
of Pareto optimum solutions rather than a single
one. A fresh non-dominated solution NSnew of the in
progress iteration is allowed to be inserted into the
primary archive depending on the following scenarios:
• If the NSnew is dominated by at least one of the
primary archive participants, it is not allowed to be
entered.

• If NSnew dominates any current member of the
primary archive (say Q), NSnew will substitute Q
for improved archive construction.

• If NSnew does not dominate the current primary
archive residents, and if NSnew is not dominated
by the present archive participants, and there is
sufficient room for the new solution, then put the
NSnew in the primary archive.

• If NSnew and the present primary archive residents
are not dominant, and for the new one, no area
is there, then drop one alternative from the
most congested location and move NSnew to the
archive [20].

4) Secondary Archive Management: In this paper, after
each generation, we consider a solution optimal if its
rank value is 1. The primary archive is responsible for
storing all the optimal solutions of a particular iteration.
However, for practical simulation of chimps’ behavior,
the algorithm requires four best solutions (A: Attacker,
B: Barrier, C: Chaser, D: Driver) in each iteration.
But during the execution of each loop, it may happen
that there are not four best solutions ranked 1 to find

ABCD. Therefore, in each iteration, we have ordered
the chimps according to their rank and chose the top
four solutions as ABCD. Again, after each generation,
we may get a different set of ABCD that are better
than the previous ABCD. So we need to preserve the
location of ABCD after each loop. Here we feel the
presence of a secondary archive to keep the ABCD
of each iteration. After finishing a particular iteration,
the new ABCD group is compared with the older one
using the dominance principle, and the fresh one will
replace the existing one if it is fitter. Then the new set
of ABCD is used to update the chimp position in the
next iteration. The schematic diagram for both primary
and secondary archive management is shown in the
FIGURE 3.

5) Conversion from Continuous to Binary ChOA:
Existing research demonstrates the effectiveness of the
transfer function (TF) to turn a continuous optimizer
into a binary one because of its simplicity, low cost, and
rapid and easy execution. The majority of researchers
employed the common TFs in the form of S and V to
alter the continuous optimizer into a discrete one. But
this proposal uses the S-form (sigmoid ()) method to
achieve the same.

T (y) = sigmoid(y) =
1

1+ e−2y
(12)

6) Chimp Location Update: Assume that µ is a random
probability value between 0 and 1. Then ifµ is less than
0.5, the equation 9 is applied to alter the current location
of the respective chimp. Similarly, a chaotic value is
used for updating the chimp if µ >= 0.5 (given in
equation 13). In this article we have taken 6 important
chaotic maps and their descriptions are mentioned in
APPENDIX VI.

Pchimp(CI + 1) = chaotic_value (13)

Here we have implemented two variants of
BMOChOA, namely BMOChOA1 and BMOChOA2.
Therefore, depending on the chaotic maps used for
each type in order to update the chimp location, there
are 12 different BMOChOAs that are coded. The
APPENDIX VI contains the detailed naming.
After calculating the new location of the chimp
(1piL(CI + 1)) in the continuous domain, the sigmoid
TF comes into front to convert it to a probability value
by using the equation 14.

T (1piL(CI + 1)) = sigmoid(1piL(CI + 1))

=
1

1+ e−21piL (CI+1)
(14)

Then the BMOChOA alters the new location of each
chimp to continue the next iteration, by applying the
equation 15.

piL(CI + 1) =

{
1, rd < T (1piL(CI + 1))
0, otherwise

(15)
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where, i: ith bit of the chimp’s position, L: original
dimension, rd: random number between 0 and 1, and
CI: current iteration

7) Returning the best of Primary archive: The primary
archive holds all the solutions that are not mutually
dominated after the given number of steps. As a
screening method, the CD value is utilized here to pick
an optimum combination of features from a group of
non-dominated ones. When the entire population is
present in the primary archive, the calculation of the CD
needs a C number of arrangements of a maximum of S
solutions, resulting in a time complexity of (CSlogS).
For details regarding the CD calculation procedure,
refer to the article [20].

8) BMOChOA Algorithm

Algorithm 1 CD-Based BMOChOA for FS
1: Set the initial size of the population (S) and the upper

bound of iterations to be used in the simulation (MI).
2: Set the initial chimps’ location.
3: Evaluate the chimps using fitness functions.
4: Select the Attacker, Barrier, Chaser, and Driver based on

their rank and store them in a secondary archive.
5: Save all non-dominated chimp locations into a primary

archive.
6: for CNT ← 1 to MI do
7: for each chimp do
8: if µ < 0.5 then
9: Update the position of the chimp using

equation 9.
10: else
11: Update the position of the chimp using

equation 13.
12: end if
13: Use sigmoid() to transform the chimp’s position

into a probability value.
14: Find the new location of the chimp in binary

domain using equation 15.
15: end for
16: Update: f, c1, c2, c3, and b.
17: Evaluate the updated chimp position.
18: Update PAttacker , PBarrier , PChaser , PDriver .
19: Update the primary and secondary archives.
20: end for
21: Return the primary archive along with the best of it using

CD measure.

9) Analysis of Time Complexity: The time complexity
of the presented wrapper-based BMOChOA for FS can
be computed as follows:

O(BMOChOA)

= O(initialization)

+MI ∗ [O(updating_chimps)+ O(evaluation)

+ O(finding_non− dominated_solutions)

+O(rank − based ordering of the population)

+O(sorting_of _primary archive using CD)]

+O(output) (16)

The time complexity of the KNN for Q samples is O
(Q * L) [20]. For finding the non-dominated solutions
after each repetition, we have used the concept of
dominance tree, which minimizes the number of
duplicate comparisons, resulting in the time complexity
of O(CSlogS) [93]. The complexity of the initialization
task can be derived by the equation 17:

O(Initialization)+ O(fitness_evaluation)

+O(rank − based ordering)

+ O(finding_non− dominated_solutions)

= S ∗ [O(L)+ O(Q ∗ L)] + O(SlogS)+ O(CSlogS)

≈ O(CSlogS) ≈ O(SlogS) (17)

Here, S:-population size, C:-number of objectives,
Q:-sample size, and L:-actual dimension.
The CD-based ordering of the primary archive in
each loop takes O(CSlogS) [20]. Hence, the overall
computational complexity of the introduced FSmethod
can be expressed as:

O(BMOChOA) = O(SlogS)

+MI ∗ [O(S ∗ L)+ S ∗ O(Q ∗ L)

+O(CSlogS)+ O(SlogS)

+O(CSlogS)]+ O(1) ≈ O(CSlogS)

≈ O(SlogS) (18)

IV. EXPERIMENTAL SETUPS
1) Datasets in Details: The achievement of the

BMOChOA is confirmed by the use of eleven
conventional datasets of various dimensions from
UCI and three microarray cancer datasets [94].
TABLE 1 explains each dataset’s structure, including
the number of attributes (9-7129), instances (32-2126)
and categories (2-21). To overcome the numerical
issue, every dataset is normalized.

2) Methods for Comparison: To verify the superior
performance of the presented BMOChOA in producing
the Pareto fronts, three of the most popular MOFS
techniques are used in this article: 1) MOGA 2)
MOPSO, and 3) NSGA-II. In the first approach, [15],
MOGA, a genetic algorithm with a multi-objective
flavour, is applied to solve the FS task. Here, the
CD measure is used to maintain population diversity.
The second method, MOPSO, [12], [95] is a very
popular multi-objective technique to handle the FS
task. Here too, a repository is used to keep the updated
fittest solutions from every iteration. The third strategy,
as suggested by Deb et al. [96], is an NSGA-II and is a
widely recognised MO approach. The method consists
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TABLE 1. Datasets in details.

of two approaches: the preservation of variation and the
non-dominated sorting procedure.
The aforementioned techniques were built and tested
in Python 3.7 on an Intel Core i3-7020U CPU @
2.30 GHz and a 4.00 GB RAM machine.

3) Criteria for Comparison: To assess the performance
of the suggested technique, four criteria have been
taken into consideration: 1) Inverted Generational
Distance (IGD), 2) Hypervolume (HV), 3) Spread, and
4) Success Counting (SCC). The descriptions of the
four criteria are provided below:
• IGD [97]: This metric is for estimating the
distance between the True Pareto Front (TPF) and
the Calculated Pareto Front (CLF). It is defined as:

IGD(CLF,TPF) =
1
|TPF |

(
|TPF |∑
j=1

dj2)
1
2 (19)

where dj = minsεCLF ‖F(s)− F(j)‖. The lower
the value, the closer is the CLF to the TPF and
the quicker is the rate of convergence. To calculate
the TPF of each dataset we followed the following
steps [98]:
1. Each evolutionary algorithm (EA) is run R

times on the test issue (R = 20 in this case).
2. In Step 1, all of the solution sets that were

acquired are combined into a single set.
After that, only non-dominated solutions are
chosen. The selected non-dominated solutions
are employed as TPF.

3. The IGD measure evaluates each solution set
acquired in each run of each EA using the
chosen TPF in Step 2.

• Hyper Volume (HV) [97]: The HV indicator is
characterized as the volume of the area in an
objective space dominated by the CLF and marked
from above by a reference point ref ε RI such that
for every s ε CLF , s dominates ref . It is calculated
as:

HV (CLF, ref ) = λI (
⋃
sεCLF

[s; ref ]) (20)

TABLE 2. Parameter settings.

where λI is the I-dimensional Lebesgue measure.
• Spread [99]: This metric is used to estimate the
spread of solutions present in the PF. The higher
the value, the better the spread of Pareto solutions.

Spread

=

√√√√ C∑
i=1

(max |CLF |j=1 Objij − min
|CLF |
j=1 Objij)2

(21)

• SCC [3]:On the basis of these criteria, the total ND
solutions of all techniques are gathered into a set
TPF to measure the efficiency of multi-objective
strategies, and then the CLFs of all the methods are
retrieved from the elements of the set TPF. Then
the contribution level of each technique in the TPF
is computed using the following equation.

SCC =
|TPF |∑
j=1

Sj (22)

where, Sj value is 1 if the jth solution of the
TPF is present in the CLF of the algorithm under
consideration, otherwise it is 0.

4) Parameters settings: As the proposed FS technique is
a wrapper-based approach to choose the best feature
subset with greater classification performance, we have
taken the KNN classifier with a 10-fold CV as a
wrapper for evaluating the feature sub string. The KNN
algorithm may easily be implemented. KNN just needs
to run the K value and the distance type function.When
it generates predictions, it really gathers and saves
information about the training sets. Because of the lack
of training before the forecasts, fresh data that does
not influence the accuracy of the KNN system may be
incorporated simply. To execute all the above-discussed
FS methods, the parameter values shown in TABLE 2
are taken.

V. RESULTS AND DISCUSSION
A. PERFORMANCE COMPARISON BETWEEN 12 VARIANTS
OF BMOChOA
All 12 versions of the BMOChOA are executed 25 times
independently. TABLE 3 shows the IGD values of the best
Pareto front obtained from each BMOChOA for 14 different
healthcare datasets. It is clearly visible from TABLE 3, that
the IGD values of the CLFs produced by BMOChOA16 are
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FIGURE 4. Pareto fronts of four methods for D1 to D10.
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TABLE 3. IGD values of CLFs obtained by BMOChOAs.

TABLE 4. Outputs of Wilcoxon signed rank test.

lower for all the 14 datasets as compared to other variants of
BMOChOAs. The lower value of IGD indicates the higher
convergence speed because it denotes the gap between the
TPF and CLF. BMOChOA16 used a Tent Chaotic map for
position updates of each chimp. The tent map is a piecewise
non-smooth chaotic map. It covers the entire phase space,
and the region is chaotic. The reason for getting better Pareto
solutions from BMOChOA16 may be due to the ability of the
tent map to search non-repeatedly all states within a specific
range. This aids the BMOChOA16 to escape from local
minima and reach the global best faster. In addition, we have
used the Wilcoxon signed rank test to verify whether the
BMOChOA16 is significantly superior to the other variants.
The performance of the two approaches is significantly
different if the P-value obtained from the Wilcoxon signed
rank test is less than 0.05 and similar otherwise. The outputs
of the Wilcoxon signed rank test along with the P-values
are given in TABLE 4. The P-values of more than 0.05 are
highlighted in the TABLE 4. The triplet (b, e, w) indicates that
BMOChOA16 is significantly better, equal to, or worse than
the other BMOChOA variants. By analyzing the entries in
TABLE 4, we concluded that BMOChOA16 is significantly
superior to the other versions. Therefore, in the following part
of this article, we have used BMOChOA16 for comparison.

B. PERFORMANCE COMPARISON BETWEEN
BMOChOA16, MOGA, MOPSO, AND NSGA-II
FIGURE 4 and 5 is for the visualization and comparison
of Pareto fronts obtained by the four above discussed
multi-objective methods for the datasets D1-D10 and
D11-D14 respectively. The parato fronts produced by the
proposed BMOChOA16 for Lymphography, Diabetic, Car-
diotocography, Cervical Cancer, Lung Cancer, Arrhythmia,
Parkinson, Colon tumor, and Leukemia data are present
above the fronts of the other three benchmark approaches,
indicating their closeness to the respective TFSs. In the case
of the Cardiotocography dataset, there are many common
members present in the two non-dominated solution sets
output by BMOChOA16 andMOPSO. Similarly, for SRBCT
samples, the performance of MOGA is also very close
to the presented approach in producing the non-dominated
solutions. The Pareto front for the LungCancer dataset has
only one solution, but that solution is superior to others. For
arrhythmia, Parkinson, and colon tumour data, there is a wide
gap between the fronts of BMOChOA16 and the same of the
other three methods, which indicates the supreme efficiency
of the proposed approach over other standard methods.

All four methods are executed for 50 iterations, and after
completing them, the CD measure is applied to pick the best
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FIGURE 5. Pareto fronts of four methods for D11 to D14.

TABLE 5. List of solutions selected by CD measure.

out of the best from the least gathered area of the primary
archive. The TABLE 5 is for listing the Pareto solutions
selected by the CD value for all the 14 datasets. In the
BreastCancerW data, CD based BMOChOA16 selected the
best one, which gives 96.9% accuracy by taking less than
50% of the original features. However, the best solution of
MOPSO gives 0.1% more accuracy than BMOChOA16 at
the expense of 2 additional attributes. In the case of lung
cancer data, the performance of the CD-based BMOChOA16
is excellent because it produced the best Pareto solution,
which is able to classify the samples with an accuracy that is
45.5% more than the actual one by considering only 2 out of
56 features. A brilliant solution is obtained from the proposed
method for the Arrhythmia dataset, which is able to give
more than 12.1% classification accuracy than the original by
focusing on only 1.4% of the actual feature set. For colon
tumour and cardiotocography samples, both MOPSO and

BMOChOA16 have shown equal performance in selecting
the best of the primary archive, and that is quite satisfactory.
Similarly, the achievements ofMOGA and BMOChOA16 are
the same in the cases of SRBCT, diabetic, and lymphography
data. In the Parkinson’s dataset, BMOCHOA16 picked a
solution which contains 2% more accuracy than the original
by using only 2 out of 754 features.

The TABLE 6 and 7 have recorded the statistical
evaluation results with respect to the count of features
selected and the corresponding accuracy figure produced
by BMOChOA16 and other three very famous algorithms,
respectively. It is found that the BMOChOA16 is able
to give higher average classification accuracy by using
fewer features in the Lymphography, Diabetic, LungCancer,
Parkinsons, and Leukemia datasets. All the methods have
shown equal performance when considering the ILPD data.
For the BreastCancerW dataset, the results are up to the mark
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TABLE 6. Statistics about how many features were selected.
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TABLE 7. Findings of statistical analysis on the four algorithms’ classification accuracy.
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TABLE 8. Multi-objective performance measures.

because the MOPSO and NSGA-II produce only 0.3% more
average accuracy at the expense of 0.75 and 1.66 average
number of attributes, respectively. Similarly, the proposed
method has shown satisfactory output for cardiotocography
data by giving a lower average number of features while
compromising with only 0.7% less classification accuracy
value than MOPSO. For arrhythmia data, our suggested
approach gave an accuracy value of 0.623 with an average of
only 3 features (1.07% of the original dimension). However,
the MOPSO is able to produce 4.1% more average accuracy
than BMOChOA16 by including 78 extra features. With
respect to the high dimensional dataset like colon tumor,
the BMOChOA16 is able to classify the samples with an
accuracy of 0.796 with the help of only 12% of the original
number of attributes. However, MOPSO has an increased
result of 4.3% more accuracy than BMOChOA16 by taking
45% of the original width. In the case of the SRBCT dataset,
MOGA gave an excellent average accuracy value compared
to that of the suggested approach, at the expense of 3%
more features. The population containing the number of
chosen features by the presented method has a lower standard
deviation than others, indicating the closeness of the Pareto
solutions towards the mean one with respect to the objective
function one. From the above analysis and discussion, it can
be concluded that the proposed approach can efficiently
generate a set of non-dominated solutions in most of the
datasets by discarding the irrelevant attributes.

C. ANALYSIS OF CONVERGENCE CHARACTERISTICS
Both the diversity of the final estimate of the Pareto
front (CLF) and the convergence to the true Pareto set of a
MOP are two key concerns in evolutionary multi-objective
optimization (EMO). In this article, we have used IGD for
convergence proof, Spread for distribution analysis, HV for
both convergence and distribution analysis, and SCC to
quantify the contribution of the four multi-objective methods.
After the end of the 50 repetitions of all the FS strategies,
the performance measures for the Pareto fronts shown in
FIGURE 4 and 5 are recorded in Table 8. As the IGD values
of the obtained Pareto fronts by the proposed approach are
less than the others in all the datasets, they are very close
to their respective TPFs. Also, the non-dominated solution

sets resulting from BMOChOA16 for all the 14 datasets
are quite well scattered as their spread and HV values are
attractive. The SCC values of the CLFs by the suggested
approach are high as compared to others in the case of most
of the datasets, indicating their larger contribution towards
getting the TPFs. We have also conducted a comparative
study on the IGD values of the Pareto fronts achieved from
25 separate executions of BMOChOA16, MOGA, MOPSO,
and NSGA-II by applying theWilcoxon signed rank test. The
statistical results of this test by taking a 0.05 significance level
are listed in TABLE 9. In TABLE 9 the ‘++’, ‘- -’, and ‘==’
for any column Approach1-Approach2 denote whether the
Approach 1 is statistically superior to, statisticallyworse than,
or significantly same as the Approach2 respectively. Entries
of the TABLE 9 indicate that the efficiency of the proposed
approach is significantly better than others for most datasets,
except ILPD and cardiotocography, where it is equal. Finally,
we can conclude that the presented BMOChOA16 with Tent
Chaotic Map outperforms others in terms of optimizing
critical aspects of healthcare data.

D. RUNNING TIME COMPARISON
In order to record the average running time of the four
above-discussed methods in TABLE 10, they are executed
25 times separately for each of the 14 datasets. By observing
the entries of the TABLE 10, it is found that for most
of the datasets like BreastCancerW (5.26), ILPD (5.12),
PrimaryTumor (3.34), Diabetic (7.17), Cardiotocography
(9.45), Cervical Cancer (2.14), Arrhythmia (7.59), Parkin-
sons (14.23), and Leukemia (17.02) datasets, the proposed
FS method took less time to complete 50 iterations.
Furthermore, for many datasets, MOPSO and NSGA-II took
longer to execute than others, because in MOPSO, both
position and velocity are updated for each particle, whereas
in NSGA-II, two populations are combined and different
fronts are computed for the next loop at each iteration.
In MOChOA, either exploration or exploitation is performed
for each chimp according to the value of µ. This may be
one of the causes of its lower execution time. However,
in the case of the other three methods, both exploration
and exploitation are carried out for each solution of the
population.
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TABLE 9. Results of wilcoxon signed rank test on IGD values.

TABLE 10. Average running time (mins).

E. MERITS OF THE PROPOSED FS METHOD
By doing a vigilant revision of all the experimental outcomes
brought up in the previous subsections, it is observed that the
suggested BMOChOA16 method for FS could be an efficient
member in the domain of FS for discarding unnecessary
aspects from healthcare samples.
• The offered FS approach, BMOChOA16, is found to be
excellent in generating the top Pareto fronts concerning
both the objectives as compared to the other three
benchmark multi-objective approaches.

• The most distinct characteristic of the proposed method
is that it is able to produce a repository of Pareto solu-
tions, which are very unique because of the crowding
distance measure.

• For classification tasks in FS, we usedKNN as awrapper
because it is one of the finest supervised classifiers and
has the lowest computational cost.

• The comparative experimental outcomes of all the four
FS methods disclose that the proposed BMOChOA16
with Tent chaotic map is able to reach higher classifica-
tion accuracy by considering low-sized feature subsets
in less time.

• The rate of convergence of the proposed method is high
as compared to others due to the lower IGD value of
the CLFs in all the datasets. Also, the CLFs of the
BMOChOA16 are able to dominate a larger area in the
objective space due to the higher spread values.

TABLE 11. Dynamic co-efficient (f) Values.

TABLE 12. Details of chaotic maps.

VI. CONCLUSION AND FUTURE WORKS
A binary multi-objective chimp optimization algorithm is
introduced in this study for the first time to handle the
bi-objective FS task in the healthcare domain. To establish the
method as a strong competitor for the FS purpose, we have
taken six chaotic maps with two variants of BMOChOA,
resulting in 12 distinct versions of the suggested approach.
The results of all the 12BMOChOAs are compared, analyzed,
and then BMOChOA16 with Tent chaotic map is statistically
selected as the best one in identifying the non-dominated
solution set which is closer to their TPFs. Finally, to verify the
robustness of the offered FSmethod, it is compared with three
well-known multi-objective FS algorithms, namely, MOGA,
MOPSO, and NSGA-II. BMOChOA16 has proved to be the
suprememethod in terms of achieving fewer feature sizes and
high classification accuracy when compared with the other
three popular methods. The best quality Pareto fronts are
obtained from the proposed method in less time for most of
the datasets and are verified by using several multi-objective
performance evaluation conditions. The soundness of the
proposed BMOChOA16 is again statistically verified by
performing a Wilcoxon signed rank test on the IGD values
of the CLFs by all four methods.

Here we have considered the FS problem as a bi-objective
wrapper-based optimization task. However, scalability and
computational complexity can be taken into consideration.
Also, the proposed wrapper method can be enhanced for the
hybrid filter-wrapper optimization task by focusing on the
mutual information and correlation among the features and
target attribute. In this article, to choose the best of the best
from the primary archive, we have applied the CD measure.
However, other criteria, such as knee point, can be used for the
same purpose. The efficiency of the proposed BMOChOAs is
verified using only healthcare data. However, it can be applied
to several other optimization tasks in the real world.

APPENDIX A
DYNAMIC COEFFICIENT
See Table 11.
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TABLE 13. Naming style of BMOChOAs.

APPENDIX B
CHAOTIC MAPS
See Table 12.

APPENDIX C
NAMING OF BMOChOAS
See Table 13.
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