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We develop effective medical image classification techniques, with an emphasis on histopathology and magnetic resonance
imaging (MRI). The trainer utilized the curriculum as a starting point for a set of data and a restricted number of samples, and
we used it as a starting point for a set of data. As calibrating a machine learning model is difficult, we used alternative methods
as unsupervised feature extracts or weight-conditioning factors for identifying pathological histology pictures. As a result, the
pretrained models will be trained on 3-channel RGB pictures, while the MRI sample has more slices. To alter the working
model using the MRI data, the convolutional neural network (CNN) must be fine-tuned. Pretrained models are placed and
then used as feature snippets. However, there is a scarcity of well-done medical photos, making training machine learning
models a difficult endeavor to begin with. In any case, data augmentation aids in the generation of sufficient training samples;
however, it is unclear if data augmentation aids in the prediction of unknown data samples. As a result, we fine-tuned machine
learning models without using any additional data. Furthermore, rather than utilizing a standard machine learning classifier
for the MRI data, we created a unique CNN that uses both 3D shear descriptors and deep features as input. This custom
network identifies the MRI sample after processing our representation of the characteristics from beginning to end. On the
hidden MRI dataset, our bespoke CNN outperforms traditional machine learning. Our CNN model is less prone to overfitting
as a result of this. Furthermore, we have given cutting-edge outcomes employing machine learning.

1. Introduction

In the era of medical healthy recognition of histopathology
for cells and tissues under the microscope used in this study,
these complement each other in the performance of life
functions. Recently, medical image analysis takes a long time
to analyze. Therefore, the interpretation of hidden medical
experts about the interpretation of images or samples is
not rare. In addition, samples can be diagnosed with the help
of the computer (CAD), which is considered by medical
experts as a high balance that helps in conducting local diag-
noses. Therefore, the medical pathologist begins by taking a
biopsy of the living tissue [1]. As the biopsy that was exam-
ined and then through which the tissue is removed. The
tissue removed from the organ is placed in a fixative before

being examined under a microscope. To be able to differen-
tiate between the different cellular levels under the micro-
scope, tissues are usually stained for ease of work and
precision and tissues are stained with hematoxylin and eosin
(H&E). Then, the pathologist examines the tissue slide to
learn their findings according to their experience. To be able
to apply computational techniques, tissue slides must first be
digitized [2]. Therefore, digitizing histological slides should
be either as micrographs (i.e., containing a single disease
condition) or as a whole slide image (WSI) (i.e., usually
containing multiple disease areas).

X-rays are used by specialized devices that help diagnose
the disease and in several ways, including magnetic reso-
nance (MRI) [3] to create an image of the particular organ
with the technique of generating a magnetic field and thus
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drawing the outputs of those rays [4]. Here comes the role of
the computer to draw an illustration in black and white with
multiple levels for each specific time, and as a group of
images, they are treated in a complex manner Figure 1.

Medical images are considered one of the most popular
practices recently, as their presence in digital form for building
CAD applications for image processing/analysis techniques [5].
Linking different medical images usingmachine learning (ML),
which can be categorized as moderated or unsupervised ML, is
one of the most prominent topics currently. In the case of
supervised learning, we train a model on a set of images where
the base truth label is known. Several supervised learning algo-
rithms that are widely known in the literature on medical
image classification are to be used: as in Multilayer Perception
(MLP) [6], Support VectorMachine (SVM) [7], and others. On
the other hand, in the absence of base truth labels, unsupervised
learning which is designed to find out hidden patterns can be
adopted through a mapping function, for example, means
aggregation or Principal Component Analysis (PCA) [8].

Our goal is to develop, apply, and comparatively evaluate
techniques that are capable of actively and evidently classify-
ing medical images.

This model was created by developing a multitrainable
machine learning technique capable of performing classifica-
tion tasks using traditional texture-based features [9].

Therefore, in this paper, we use the basis of shearlet
positive classification techniques for Alzheimer’s patients.
The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database and the Open Access Imaging Studies Series (OASIS)
are used to attain this purpose [10].

As mentioned previously, machine learning suffers from
computer costs and a lack of laboratory equipment, through
the lack of tests on which machine learning depends to
obtain a feature vector for each chip that will represent the
magnetic resonance imaging sample. To solve these prob-
lems in Alzheimer’s disease, we adjust machine learning

with a model that has the ability to create cognitively rele-
vant recipes to encode characteristics of Alzheimer’s disease
and differentiate it from other cognitive diseases, in order to
take advantage of feature space generation through the capa-
bilities of the CNN model to learn feature maps from the
slices for a more efficient stack of the MRI sample [11].

We suggest investigating the integration of both 3D and
shearlet descriptor features. After the feature vector sequences
are computed from the shearlet, the domain CNN model, we
propose to train a classification model in the following: (1)
classic classifier training (SVM and DTB) and (2) building a
custom CNN model for vector end-to-end postprocessing
features [12].

2. Related Work

Alzheimer’s disease (AD) is critical for a pathologist to suggest
appropriate treatment for patients. Different methods are used
with the pathological tissue classification process. Therefore,
we use techniques for visual, gray-level texture-based repeti-
tion matrix, variable-scale feature transformation, local binary
pattern, and gradient histogram [13]. Besides that, features
that depend on texture are extracted from a whole image or
at least the specific section in the image like gray matter, brain
spinal, or white matter. Since GLCM comes, four descriptors
can be obtained: variance, correlation, homogeneity, and
energy. As a result, just a portion of some slides is run in the
training, while the vector of features will not be averaged if all
segments are used [14].

The author suggestedmany steps for a new diagnosis of the
acute lymphoblastic leukemia approach. This method entails
acquiring blood images using the public dataset (ALL-IDB1),
segmenting blast cells using marker-based segmentation
(MBS), and then extracting features from segmented blast cells
using the gray level cooccurrencematrix (GLCM) with reduced
and selected specific features using probabilistic main

Normal/HC

Alzheimer’s diseases/AD

Figure 1: Image analysis of MRI related to Alzheimer’s disease by using ML [4].
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component analysis. Furthermore, Random Forest (RF) was
introduced to categorize the segmented cell into the normal
or abnormal group at the classification level [15].

Additionally [16], there are three important classes of
classification with the following: AD vs. CN, pMCI vs. CN,
and pMCI vs. sMCI. Next, descriptors from PCA used in
the training mode in the SVM classifier depend on extracted
features with reducing samples of MRI. The Fisher Discrim-
ination Ratio (FDR) scores were used to arrange the PCA
descriptors in descending order. Also, in terms of extracting
information from the return on investment, there are several
studies that have been worked on by some researchers. For
instance, the authors computed cooccurrence matrices from
voxel coupling [17].

These characteristics were derived from various MRI
scan locations, including the hippocampus, precuneus, and
posterior cingulate cortex. GLCM was employed instead of
tissue-based spatial domain slices to implement this method.

However, there are several methods that have been used
in the field of magnetic resonance imaging data in terms of
several different measurements, analyses, and guidelines
[18]. Each MRI slice was transformed using a double
complex wavelet transform tree (DTCWT). The PCA was
used to reduce the wavelet coinage clients. To distinguish
CN samples from AD samples, forwarding neural networks
were used. Likewise [19], the Daubechies wavelet (DW)
was utilized to convert each MRI image into directions and
power subbands; after that, a construct of descriptors is used,
and for nearest neighbors, AD classification is suggested.

The shearlet transform was used which has really aniso-
tropic waveforms, which in previous studies were based on
size only [20], where coins are used to classify decorative
images, for example [21]. Shearlet-based descriptors were
used by fairing to judge images. While building local power
features of shearlet coins, quantifying and encoding these
local power features make it represent it as a fixed rotation.
And in all energy graphs for all levels of decomposition,
the backlog represents the properties of the image [22]. It
has been suggested that there are specific levels of bronchial
field decomposition of breast tumor ultrasound in classify-
ing the images.

An approach was proposed for textured image classifica-
tion and retrieval, using linear regression where the dependen-
cies of adjacent shearlet subdomains are modeled to represent
classification subshearlet domains, to compute the power
descriptors. However, the image retrieval is hermetic by both
the stats in the contour and the shearlet domains [23], as
shown in Figure 2.

3. Shearlet-Based Training in
Machine Learning

In order to implement the histopathological image as used in
AD, we apply training classifiers to the complex shearlet
transform and with the complex coefficients compute the
magnitude and relative phase (RP), as shown in Figure 3.

The shearlet transform, used for image classification as the
authors explain, is an effective tool for capturing two-
dimensional orientation features from an image. However,

the shearlet coefficients for the spatially distributed disconti-
nuities must be specified and are in contrast to the constants
[24], although curves and contours have similar characteristics
to cuts within certain constraints [25]. A curvelet was created
based on the rotation operator. Do not maintain the digital
network, as subsistence lacks solid theory [26]. On the other
hand, the property of the shearlet transform is its use of shear
to control directional selectivity. This process does not destroy
the digital network, that is, unlike curvelet transformation
which happens in most cases. Therefore, shearing is allowed
digital implementation of the shearlet transform. The shearlet
transform depends on the affine system theory. There are
three operators in this affine system as follows:

(1) First, the dilation operator that is based on the para-
bolic scaling Aa matrix, where a > 0:

Aa=
a 0

0 a1/2

 !
ð1Þ

(2) Second, to capture the orientations of waveforms,
the shearing matrix Bs is utilized, where s € R:

Bs=
1 s

0 1

 !
ð2Þ

(3) Finally, a translation operator (t € R2) is used to
change the position

To obtain the shearlets in the discrete domain [27], the
continuous shearlets are sampled on a discrete set of param-
eters. As such, one can choose a = 2−j and s = −1, where j ;
l € Z, to compute M2−j,−1. Then, M2 −1

M2− j,−1
M2j,1= BlAj,

where B and A can be known as

A=
4 0

0 2

 !
,

B=
1 1

0 1

 !
:

ð3Þ

Given that j ; l € Z and this translation parameter t is
replaced with k € Z2, the discrete shearlet transform then
can be obtained as

Ψj,l,k xð Þ = detAj j i2 Ψ BiAjx − k
� �

: ð4Þ

There are a set of new samples that capture the statistical
distribution/information of the shearlet size/stage compo-
nents for each scale and trend after this complex shearlet
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transformation computation [28]. The magnitude and phase
coefficients of a complex number C = a + ib, where a is the
real component and b is the imaginary part, are defined as

P =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + b2

p
and θ = tan−1ðb/aÞ, straight. However, a com-

parison with others who use or take into account only the
magnitudes since the efficacy of these treatments for their
stage and their ability to classify biomedical images is impor-
tant with its ability to classify biomedical images.

However, to categorize tight pictures, [29] relied on
extracting descriptors from the relative phase (RP) of a
sophisticated vectorial filter bank. Therefore, the relative
stalk phase coefficients are extracted. The complex shearlet
transform with S scales and K orientations for each scale

decomposes a given image of size N N . The subband phase
angle coefficient at position I jÞ at scale s and orientation k
is denoted as ðskÞ ði, jÞ, where s = 1, 2,⋯, S and k = 1, 2,⋯
, K . S = 4 and K = 8 per scale in our study.

The RP of a directional subband is calculated as follows
for a given phase coefficient at position I jÞ:

RPak i, jð Þ =
θak i, jð Þ − θak i, j + 1ð Þ, if 1 ≤ k ≤

k
2
,

θak i, jð Þ − θak i + 1, jð Þ, if
k
2
≤ k ≤ K:

8>><
>>:

ð5Þ

Image A (CT)

Image B (MRI)

Fused Image

Figure 2: Medical image fusion.

A histopathological
image

Complex shearlet
decomposition

Computer magnitude
coefficients

Computer phase
coefficients

Figure 3: Shearlet transform domain.
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The complex shearlet transformation was implemented
in ShearLab. Therefore, the vertical and horizontal differ-
ences were selected due to the shear direction of the shear
transformation. However, the multiscale, omnidirectional
shearlet transform provides multiresolution analysis of tex-
tured images. Moreover, achieving the computation of sta-
tistical descriptors for each directional subdomain (size
and RP) is important in the implementation phase [30].

4. Method and Discussion

Methodology mainly consists of four stages starting with the
preprocessing stage that is responsible for image preparation
like noise reduction then extracting new useful features from
an image to provide for the next stage of classification by
certain classifiers, and the last stage has to evaluate the pro-
posed result to benchmark with existing results.

4.1. Proposed Model and Components. Figure 4 depicts the
model for our proposed project. The fusion of both deep fea-
tures and shearlet descriptors is worthy here in the proposed
study. The proposed system comprising two MRI samples
and pipelines is preprocessed in the first step of our study,
as indicated in the picture. The shearlet transform coins
are then summed up using some important procedures, as
each summarization differs from one way to another in sup-
porting a useful set in descriptors of MRI samples so that the
gain of high-end performance is achieved. When using the
ADNI dataset, descriptors of SFTA will classify correctly.
As a result, for the OASIS dataset, the cooccurrence matrix
synthetic features produced the best classifier.

The use of CNN variables is extracted from MRI utiliza-
tion samples, and the use of updating models is in terms of
features [31]. Simulated results show that SVM classification
is achieved compared with other techniques such as the Soft-
Max layer. As a result, SoftMax was used to try in the pro-
posed research. By training the traditional ML class, the
features were utilized separately. However, we found that
the deep MobileNet features extracted by OASIS in addition
to ASNI datasets achieved worthy results during classifica-
tion. Finally, the suggested descriptors might be bound by
these methods:

(1) For the classic class, both shearlet-based feature and
ML are fed in the system

(2) The proposed CNN model was also fed by combin-
ing both deep features and descriptor of shearlet.
Then, system components were outlined in detail

The neural network is the main component of machine
learning designed to adapt with progress needed; it consists
of three parts including the input layer (which are features
extracted from images), output layers (which are predicted
evaluated results), and hidden layer considered the interme-
diate layer that is adaptive with the process in terms of the
number of layers and node numbers in such layer as shown
in Figure 5.

4.1.1. The 3D Shearlet Transform. Samples of MRI have differ-
ent sizes such as a, b, and c attached with S scales of directions
K in each 3D scale for shearlet transform in data of MRI. For
convolution with the MRI specimen, the holographic

Predicted label

MRI SLICES

Classification

A B

Fine-tused CNN/
feature extractor Pre-processing

3D shearlet
transform

Shearlet based
description

Concoct (A, B)

Figure 4: Proposed model for 3D shearlet-based textural descriptors with ADNI and OASIS MRI classification features.
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dimension of liters, a b z, is employed. A structure of dimension
a b c z serves as the foundation for this arrangement, with a, b, c
, and z denoting height, breadth, number of slats, and meters,
respectively. We get the average presence of all shearlets after
collecting the volume of coins for each segment with varied ori-
entations; thus, the I segment is defined by only one mean
shearlet subdomain (for example, a × b × i × 1). The severe
devaluation of the shearlet coins is important. Otherwise, it will
end up with toomany descriptors per slice while computing the
features derived from the direction of each subband. In addi-
tion, manipulating whole descriptors of segmented MRI sam-
ples through a trait vector results in a high number of features
within less training [32].

The rating results are low for news samples due to the
overfitting of the rating tool. Therefore, an attribute repre-
sentation can be obtained for the average stories of the seg-
ment I slice in one vector di = ðd1,d2,⋯, d3Þ, where j
represents the length of the vector. However, the MRI sam-
ple of the latter feature vector may be referred to as F = ð
d1, d2,⋯, dnÞ, such that n is considered the MRI samples.

4.1.2. Shearlet-Based Descriptors. The different descriptors
are inconsistent with each other through the extended fea-
ture, which combines the different shearlet descriptors to
help it improve its performance. Thus, there is a set of fea-
tures that take certain specific aspects of the descriptors that
were used jointly to the advantage of the individual descrip-
tors and the ability to achieve reasonable accuracy. So, we do
the following fusion test:

Fusion 1: descriptors of shearlet magnitude or RP (CM
+LBP+LOSIB+SFTA)

Fusion 2: shearlet magnitude or RP descriptors (CM
+LOSIB)

Fusion 3: shearlet magnitude coefficients (CM+LBP
+SFTA+CM Dot) and shearlet RP coefficients (CM+LBP
+LOSIB) [33]

4.2. CNN as Feature Extractor. In the task of classifying
breast cancer tissue images, the use of a pretrained model
combined with logistic regression as a classifier resulted in

good classification results. Four pretrained CNN models
capable of handling the complexity of MRI datasets were
employed in this study: SqueezeNet-v1.1 [34], MobileNetv2
[35], Inception-v3 [36], and Xception [37].

For the proposed study, we aim to use samples of MRI in
different channels which we stack the slides deeply. Thus,
each CNN-certified model must be modified in such way.

Modify the input layer, hw c, by modifying the dimen-
sions of the magnetic resonance imaging sample, by making
the channel number (c) of MRI greater than three. This
includes a pretrained input layer similar to RGB images, as
well as a convolution layer adjacent to the input layer on a
pretrained array of weights with channel size = 3. As a result,
it should replace this convolution layer with the new input
layer’s channel size and train them from the beginning.

Furthermore, certain layers such as the pool and convo-
lution layer in addition to the dense layer run in the train-
ing mode with a certain dataset before proceeding with the
testing mode and increase the features by filtering the
image sample; then, because the dataset we are working
with is binary, we need two dimensions for the classifica-
tion layer.

We have mentioned in prior studies magnetic resonance
imaging samples. As a result, modifications to machine
learning, pretrained by the latest technologies in knowledge
networks and features of the stacked MRI sample, are being
implemented at the same time. As a result, each model
employed in this study has a description and features, such
as the following:

(i) SqueezeNet-v1.1 contains 8 modules, which are
Fire2-Fire9. Each unit has 2 expansion layers, one
with a size of 1 × 1 core and one with a size of 3 ×
3. However, feeding both expansions into the depth
chain layer leads to a definition of the size a × b × c
per unit by creating feature maps. In this form, we
select the “Fire9” module. We are working on an
average of each feature map that generates a feature
vector with a size of 1 × 1 × c, so the mapping vector
of features in MRI is considered

Input 1

Input 2

Input n

Output 1

Output n

Input layer Hidden layer Output layer

oi h1 h2 hn

Figure 5: Construction of neural network.
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(ii) Also, the MobileNet.2 is made up of 16 blocks and is
divided into two types: a linear bottleneck process
and a skip connection. The following procedures
are found in both blocks: convolution, batch nor-
malization, and the modified linear unit (ReLU).
As a result, min ðmax ðx, 0Þ, 6Þ is added to ReLU
to limit the minimal output. The pooling layer
(avg.) is output as the last layer in deep used in
the proposed but first to the initialization layer

(iii) Inception-v3 is a model that uses a unit that draws
input data to several different branches where each
branch links through channels with a set of convolu-
tions of size 1 1. So, the treatment for this feature
maps across another set of convolutions with ranks
3 3 or 5 5. As all of these feature maps are sequential,
the output of Avg Pool is utilized as the deepest layer
shortly before the classification layer in this model

(iv) Xception is a model with 36 convolutional layers
that are formulated in 14 pcs. So, it is based on a
deep detachable wrap of the layers where only the
first and last blocks have no residual connections
around them, but the rest have a residual linear con-
nection around them. It is similar to Inception-v3,
which has an Avg Pool layer in this model

In this study, we look at the performance of two classi-
fiers in particular. First, SVM is used for binary classification
(one-to-one class judgments) [38]. We balance all feature
vectors before training to ensure that they have the same
mean and variance. The kernel function transforms the
input data into a higher-dimensional feature extraction,
which is then used to simulate the input tissue dataset’s
hyperlevel classification.

Second, each classifier in the set is a classification and
regression tree, according to DTB (CART). The dataset is
broken down using the decision tree. As a result, the data-
set’s inclusions are reduced with each partition when com-
pared to the original dataset [39].

Therefore, we explore the following fusion of various
deep features obtained under the supervision of the various
ML models:

Fusion 1: (SqueezeNet (Fire9)+MobileNet (Avg
Pool)+Xception (Avg Pool)+Incorporation descriptors
(Avg Pool))

Fusion 2:MobileNet (Avg Pool)+Xception (Avg Pool)+In-
corporation (Avg Pool) descriptors

Our use of our custom CNN model is to integrate man-
ual descriptors and deep features. We examined the feature
set exclusively within the same domain, thus either hand-
crafted descriptors together or deep features together. In this
field, combining both handcrafted and fully deep features is
our proposal in this work. Below is a comparison between
the mergers as follows:

(i) All our extracted manual descriptors are in the form
of a single data array that is aggregated (e.g., A) then
spread with all features in deep (B); this is done for
all MRI brain scans

(ii) It is made up of a single collection of handcrafted
descriptors and a single set of deep features (i.e., so
each set is determined based on its performance as
it is used individually). This fusion is only applicable
to brain MRI data

Averaging of classified performance illustrate in

ACC = TP + TNð Þ = TP + TN + FP + FNð Þ
= TP + TN + FP + FNð Þ = TP + TN + FP + FNð Þ
= TP + TN + FP + FNð Þ = TP + TN + FP + FNð Þ
= TP + TN + FP + FNð Þ:

(i) Positive represents the true positive ratio or can say
S = TP + FN and also considered sensitivity (S)

(ii) Negative represents the ratio of true negative then
TN+FP refer to defining specificity (SP)

(iii) GM ðgeometricmeanÞ = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sen × SP

p

Our unique CNNmodels are constructed from the ground
up, with 70% used for training and 40% used for validation, due
to the time commitment of training machine learning models.
The best-performing model is based on the availability of sep-
arate hidden data tested from start to finish using shearlet-
based descriptors and classifiers. Table 1 illustrates an example.

5. Results and Discussion

5.1. Results of Classification Utilizing Shearlet-Based Descriptors.
The results of feature extraction using a shearlet-based model
are presented in this paper. Nonetheless, Table 2 and Figure 5
illustrate DTB and SVMperformance, on the ADNI andOASIS
datasets used in this study. As a result, the classification results
of the classifiers shown below are obtained using 5-fold nested
cross-validation.

Table 1: ADNI descriptor performance.

Technique ACC Sen SP GM

Fusion 1
SVM 0.8101 0.8740 0.6534 0.6801

DTB 0.7052 0.7229 0.6771 0.7066

Fusion 2
SVM 0.6756 0.6448 0.6663 0.6792

DTM 0.7052 0.7115 0.7000 0.7088

Table 2: OASIS descriptor performance.

Technique ACC Sen SP GM

Fusion 1
SVM 0.8652 0.7012 0.7620 0.6599

DTB 0.7002 0.6229 0.7771 0.6966

Fusion 2
SVM 0.6556 0.5448 0.7663 0.6392

DTM 0.7002 0.6115 0.7885 0.6888
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The OASIS dataset is used to test our 3D shearlet technol-
ogy. As a result, when fed into a classification model utilizing
the OASIS dataset, our approach obtains accuracy ranging
from 76 to 81%, as shown in Figure 6. While classifying the
dataset using the synthetic features of the cooccurrence matrix
associated with a class SVM with a corresponding sensitivity
of 0.6117, specificity of 0.7330, and geometric mean of
0.6614 yielding the highest accuracy of 0.8122, the merge
boosts accuracy to 0.7002 when using the DTB model as
shown in Table 2.

5.2. Achievement Results in Training Mode. CNN results are
illustrated in Tables 3 and 4 by using extracted features on
OASIS and ADNI datasets. For the ideal universe when uti-
lizing the DTB model, the pretrained MobileNet leads to

strong classification results when trained in a fivefold overlap-
ping CV pattern for both datasets used in our investigation.

We also found that by using two distinct types of deep
feature merging to classify both datasets (ADNI and OASIS),
the classification results did not improve. The statistical sig-
nificance of the t-test for MobileNet results against deep
fusion of feature 2 to classify the ADNI dataset is not signif-
icant at p 0.05, where the t value and p value are 0.6631 and
0.2629 as illustrated in Figure 7. Similarly, by classifying the
dataset of OASIS using a t-test of MobileNet performance
against deep feature fusion 2, the result is not significant at
p 0.05 with a t value of 0.8885 and a p value of 0.2001.

Descriptors and features illustrated in Tables 5 and 6
expose the shearlet-based feature set normal extracted features
by DTB and SVM classifiers first shown in Fusion 1 with the

Table 4: Performance of OASIS of deep features.

Technique ACC Sen SP GM

(1) SqueezeNet
SVM 0.9123 0.8732 0.9214 0.8832

DTB 0.8823 0.8677 0.9126 0.8861

(2) MobileNet
SVM 0.9157 0.9024 0.9387 0.9184

DTB 0.9288 0.9156 0.9477 0.9291

(3) Xception
SVM 0.9010 0.9014 0.9085 0.9010

DTB 0.8869 0.8919 0.8969 0.8894

(4) Inception
SVM 0.8859 0.9081 0.8773 0.8889

DTB 0.9016 0.8966 0.9139 0.9023

Fusion 1
SVM 0.8829 0.9064 0.8843 0.8906

DTB 0.9030 0.8976 0.9059 0.8975

Fusion 2
SVM 0.9020 0.9266 0.8823 0.9001

DTB 0.9011 0.8956 0.9039 0.8975

100%

80%

60%

40%

20%

0%

1 2 3 4

Fusion 1 SVM

Fusion 2 SVM

Fusion 1 DTB

Fusion 2 DTB

Figure 6: Performance of OASIS descriptor performance.

Table 3: ADNI classification performance using deep features.

Technique ACC Sen SP GM

SqueezeNet
SVM 0.8602 0.9001 0.8218 0.8378

DTB 0.8950 0.8774 0.9132 0.8939

MobileNet
SVM 0.9050 0.8948 0.9063 0.8987

DTB 0.9100 0.9161 0.8964 0.9052

Xception
SVM 0.9000 0.8744 0.9217 0.8963

DTB 0.9050 0.8839 0.9241 0.9021

Inception
SVM 0.8650 0.8861 0.8410 0.8631

DTB 0.8800 0.8839 0.8727 0.8776

Fusion 1
SVM 0.8700 0.8756 0.8608 0.8665

DTB 0.8800 0.8839 0.8727 0.8776

Fusion 2
SVM 0.8650 0.8661 0.8608 0.8622

DTB 0.8800 0.8839 0.8727 0.8776
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ADNI dataset to achieve high accuracy. As a consequence, by
picking only the best performance, the SVM model was
employed to get the highest accuracy achieved by proposing
two classifiers when trained in 5-fold CV using 80% to 40%
for training and validation.

Therefore, the combination is used to train the OASIS.
While using a DTB, we attain the highest classification accu-

racy of 80% by merging all features extracted with descrip-
tors; the acquired classification accuracy is 82.88 percent
(i.e., the ones that got the best accuracy on their own). As
a result, this model was chosen to be tested using never-
before-seen data (i.e., data that had been hidden from the
start to the end). The proposed two classifiers in terms of
5-fold CV and CNN classifiers are trained with a training
and validation ratio of 40% to 80%.

Classified images will be trained on the patient attributes
or hidden data, as described earlier. As a result, the proposed
approach can be used to detect AD brain scans in patients
who are not all at the same stage of the disease.

6. Conclusion

The major purpose of this study is to develop a model for
medical image classification that is both efficient and accurate.
To that end, we have presented two pipelines, one that uses
manual procedures based on clipping descriptors and the
other that uses machine training methods. MRI scans, on the
other hand, can be used to carefully design prescriptions and
extract relevant information and features from the content of
medical images. In addition to the difficulties in histopathol-
ogy pictures, which employ magnetic resonance imaging,
there are other issues to consider. Each sample contains a large
number of 2D image slices. As a result, we will have to adapt
our methods to deal with class cation MRI samples. As a
result, using a three-dimensional shearlet transform, calculate
a shearlet-based feature representation. We do not employ
pretrained machine learning (CNN) models as unsupervised
feature extractors, on the other hand, because we would have
to feed each slice separately to generate a trait vector for each
slice. As a result, we use theMRI samples to tweak a pretrained
model, which we then employ as a feature extractor for the
entire MRI sample.
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Figure 7: Deep features improve ADNI classification efficiency.

Table 5: Performance of ADNI with proposed features.

Technique ACC Sen SP GM

(a) Descriptors without CNN

Fusion 1
SVM 0.9120 0.9210 0.9210 0.8992

DTB 0.8750 0.8900 0.8600 0.8742

Fusion 2
SVM 0.8750 0.9400 0.9300 0.9345

DTB 0.8950 0.9100 0.8800 0.8933

(b) Descriptors with CNN

Fusion 1 CNN 0.9002 0.8901 0.9050 0.9101

Fusion 2 CNN 0.9003 0.9003 0.9020 0.8992

Table 6: Combined performance of OASIS.

Technique ACC Sen SP GM

(a) Descriptors without CNN

Fusion 1
SVM 0.8944 0.9000 0.8889 0.8922

DTB 0.9000 0.9000 0.9000 0.8981

Fusion 2
SVM 0.9278 0.9111 0.9444 0.9274

DTB 0.8944 0.8889 0.9000 0.8944

(b) Descriptor with CNN

Fusion 1 CNN 0.8671 0.9021 0.8001 0.7983

Fusion 2 CNN 0.9500 0.9603 0.9302 0.9291
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Our shearlet-based descriptors are also linked to impor-
tant Alzheimer’s disease classification criteria. In addition,
future work while reviewing our strategies may extend the
descriptors suggesting new features by MI segmentation. It
is important to look for a multimodal brain tumor image
segmentation standard (BRATS), for example. Furthermore,
some research has suggested that categorization models be
built based on specific segments.
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