
Citation: Alswaitti, M.; Siddique, K.;

Jiang, S.; Alomoush, W.; Alrosan, A.

Dimensionality Reduction,

Modelling, and Optimization of

Multivariate Problems Based on

Machine Learning. Symmetry 2022,

14, 1282. https://doi.org/10.3390/

sym14071282

Academic Editor: José Carlos

R. Alcantud

Received: 7 May 2022

Accepted: 10 June 2022

Published: 21 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Dimensionality Reduction, Modelling, and Optimization of
Multivariate Problems Based on Machine Learning
Mohammed Alswaitti 1,† , Kamran Siddique 1,* , Shulei Jiang 1, Waleed Alomoush 2 and Ayat Alrosan 2

1 School of Computing and Data Science, Xiamen University Malaysia, Sepang 43900, Malaysia;
alswaitti.mohammed@xmu.edu.my (M.A.); swe17091677@xmu.edu.my (S.J.)

2 School of Information Technology, Skyline University College, Sharjah P.O. Box 1797, United Arab Emirates;
waleed.alomoush@skylineuniversity.ac.ae (W.A.); ayat.alrosan@skylineuniversity.ac.ae (A.A.)

* Correspondence: kamran.siddique@xmu.edu.my
† Current Address: SnT, University of Luxembourg, 6, Avenue de la Fonte, L-4364 Luxembourg, Luxembourg.

Abstract: Simulation-based optimization design is becoming increasingly important in engineer-
ing. However, carrying out multi-point, multi-variable, and multi-objective optimization work is
faced with the “Curse of Dimensionality”, which is highly time-consuming and often limited by
computational burdens as in aerodynamic optimization problems. In this paper, an active subspace
dimensionality reduction method and the adaptive surrogate model were proposed to reduce such
computational costs while keeping a high precision. In this method, the active subspace dimensional-
ity reduction technique, three-layer radial basis neural network approach, and polynomial fitting
process were presented. For the model evaluation, a NASA standard test function problem and
RAE2822 airfoil drag reduction optimization were investigated in the experimental design problem.
The efficacy of the method was proved by both the experimental examples in which the adaptive
surrogate model in a dominant one-dimensional active subspace is given and the optimization
efficiency was improved by two orders. Furthermore, the results show that the constructed surrogate
model reduced dimensionality and alleviated the complexity of conventional multivariate surrogate
modeling with high precision.

Keywords: active subspace; dimensionality reduction; surrogate model; optimization design;
multivariate problems

1. Introduction

Optimal design usually involves multiple disciplines, multidimensional variables,
and complex and time-consuming calculation models [1,2]. Thus, carrying out multi-
point, multi-variable, and multi-objective optimization work would suffer the “Curse of
Dimensionality” [3]. Combining big data analysis and machine learning, the intelligent
optimization methods based on variable parameter dimensionality reduction and their
application is the current development trend, which can reduce time and space complexity,
save the overhead of unnecessary features, and improve the optimization effect [4–7].

In complex physical systems, scientists and engineers study the relationships be-
tween the models’ inputs and outputs. They employ computer models to estimate the
parameters and their effects on the system. However, the process becomes intricate—if
not impossible—when the simulation is expensive and the model has several inputs. To
enable such studies, the engineers may attempt to reduce the dimension of the model’s
input space.

Active subspaces are an emerging set of dimension reduction tools that identify
important directions in the parameter space. Reducing the dimension can enable otherwise
infeasible parameter studies [8]. Hence, the research contribution of this paper is based on
active subspaces to explore and use the dimensionality reduction feature structure existing
in the optimization problems. The internal main active features were extracted by using
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the samples of input and output, transforming the high-dimensional optimization problem
into a low-dimensional subspace to be handled. Artificial Neural Networks (ANNs) and
other machine learning algorithms were then employed to build high-efficiency and high-
precision surrogate models, which can both ensure the design precision and boost the
optimization speed. The main contribution is to establish a lower-dimensional high-fidelity
surrogate with ANN and polynomial fitting for efficient optimization design.

The rest of the paper is structured as follows: Section 2 presents related works and
essential backgrounds. Section 3 presents the details of the proposed mechanism for
constructing the surrogate model based on the radial basis function (RBF) with its pre and
post-phases. The experimental design is presented in Section 4, and the obtained results and
discussions are listed under Section 5. Finally, Section 6 includes the paper’s conclusion.

2. Related Work

Surrogate models are used to perform simulations of complex systems. The cost of
constructing accurate surrogate models with several input parameters increases exponen-
tially, especially for time-consuming optimization problems. The dimensionality of the
input sample will make the surface fitting process computationally difficult to achieve in
some situations, leading to an efficiency bottleneck.

Dimensionality reduction of variables [9] and corresponding surrogate model installa-
tion in reduced dimensions need to be studied by transforming high-dimensional problems
into low-dimensional problems. A simple dimensionality reduction method could be
carried out using sensitivity analyses [10] to determine which design parameters have a
larger influence on the system response. The less insensitive parameters are neglected to
save the dimensionality considered in the surrogate regardless of some input variables that
may lead to a low-fidelity model [11]. The low-fidelity surrogate model cannot satisfy the
precision of nonlinear multivariate problems, e.g., the transonic airfoil [12].

Another dimensionality reduction strategy established by an effective surrogate model
is to find an active subspace in a lower dimension in the entire variable space, which
represents the maximum change directions of the system response and input variables.
Compared with traditional dimensionality reduction methods, this approach can hold
the maximum influential effects of design variables on the objective, thus providing an
equivalent high-fidelity surrogate model of a much lower dimension.

The concept of the active subspace was introduced by Russi [13] and formalized by
Constantine et al. [14]. Due to the efficiency of these dimensionality reduction techniques,
active subspaces can be used and studied in some engineering and mathematical prob-
lems [4,8,15–17]. Recently, many studies have been proposed to tackle the real world and
industrial problems such as the optimization of the industrial copper burdening system [18],
the surrogate model for low Reynolds number airfoil based on transfer learning [19], and
parameter reduction of composite load model proposed by the Western Electricity Coordi-
nating Council [20]. Moreover, In the research proposed by Wang et al. [21], twenty-two
dimensional functions related to airfoil manufacturing errors were approximated through
the response surface in the one-dimensional active subspace. The work demonstrated
that the uncertainty of the aerodynamic performance can be significantly reduced using a
measurement information function that selects a small number of inspection points on the
airfoil surface.

2.1. Active Subspace

Based on active subspaces, parameter dimensional reduction can take place to reduce
the time and space complexity, save the overhead of unnecessary features, and improve
the optimization effect. The mapping from input samples to output models can be seen
as a multivariate function. Mostly, the engineering models contain several parameters.
The active subspace consists of a low-dimensional subspace compared with the input
sample space. The low-dimensional subspace represents the majority of the variability in
the objective function. However, active subspaces seem to identify the low-dimensional
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subspace compared with the space of inputs. In other words, active subspaces identify
a set of important directions. Through these directions, simulation prediction changes
fastest where other directions will not affect the prediction of the simulation so that it can
be neglected.

From the dimensional analysis perspective, the result is that when the measurement
units are changed, the relationships between physical quantities do not change. For
example, the relationship between the speed at which an object falls to the ground and
the height at which the object falls does not depend on whether the height is in feet or
meters. Many different learning algorithms can achieve this relationship where each specific
learning algorithm will generate a model with a specific inductive bias. The inductive
bias of this learning algorithm is very important since different learning algorithms have
different inductive biases. Consequently, with the same training data, different learning
algorithms will generate different results. Therefore, the selection of the learning algorithm
depends on the real problem to be solved.

There are some requirements to determine whether the simulation model is qualified
to use an active subspace. The simulation model and the inputs should be well defined,
where each input should have a range and enough resources to run the simulation model.
These requirements include the following:

Normalized inputs: a vector x should include m components, each component ∈ [−1, 1].
The purpose of the normalization is to remove the possibility that some components may
be too large, which can greatly affect the result, and some may be too small so that their
effect could be ignored [8]. x` is a vector with m components which represents the lower
bounds of vector x, and xu represents the upper bounds of vector x. The computation
method to normalize the input is as follows

1
2
(diag(xu − x`)x + (xu + x`)). (1)

Sampling density ρ: checking the dimension reduction sampling randomly is very
useful in high dimensional space. Engineers must choose ρ, where different ρ values
represent different results. Determining which ρ value is better depends on the suitability
of each ρ to represent the parameter variability in each situation. There is no universal
prescription for choosing ρ in the active subspace whereas the only constraint is that ρ
must be a probability density. Active subspace mostly comes out from the gradient ∇f(x)
concept, and it is necessary to have the ability to evaluate the gradient. As in (2), the
formula produces eigenvectors and eigenvalues. The eigenvectors are used to represent
the active subspace dimension, and the eigenvalues that correspond to the eigenvectors
are used to determine the active subspace [8]. First, it computes each xi corresponding
gradient ∇f(xi). Then it calculates the eigenvalue decomposition. W represents the orthog-
onal matrix of eigenvectors, and Λ = diag(λ1, · · · , λn) represents the diagonal matrix of
nonnegative eigenvalues.

C ≈ Ĉ =
1
M

M

∑
j=1
∇Xf

(
xj
)
∇Xf(xj)

T = ŴΛ̂ŴT (2)

From the above, eigenvectors are used to represent the active subspace dimension,
and the eigenvalues correspond to the eigenvectors, which are used to determine the
active subspace. So, finding the gap in eigenvalues and choosing the first k eigenvalues to
represent the active subspace is needed.

In complex systems, the active subspace works well provided that they have two
features. The first is where the output changes monotonously with respect to the parameters
when scientists informally describe the influence of parameters on the model. The second
is to give the model a nominal parameter value in theoretical or actual measurement
situations. Back-of-the-envelope estimates of the variation of the input parameters usually
adopt a perturbation form of 5–10% relative to the nominal value. This perturbation
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often attributes little change to the model. If the input perturbations are within the range,
the linear model can represent the global trends well. These features are based on some
complex models where many complex models do not have those features. Hence, using
active subspace is not helpful in such systems [22].

In the quick-and-dirty check procedure, the least-squares method is required to come
up with the coefficients of the linear regression model. The method of solving the model
based on the minimization of the mean square error is called the least-squares method [23].
First, the data set D = {(x1, y1), (x2, y2), . . . ,(xm, ym)}, xi = (xi1; xi2; . . . ; xid), yi ∈ R, the
sample has d attribute description. Then the coefficient of this equation could be calculated
as follows

yi ≈ wTxi + b. (3)

To find the most suitable coefficient, EŴ = (y−Xŵ)T(y−Xŵ) should be the smallest where

X =

1 x1
T

...
...

1 xm
T

, ŵ = (w; b), y = (y1; y2; . . . ; ym).

To minimize EŴ, let
∂EŴ

∂Ŵ
= 2XT(Xŵ− y) = 0 (4)

So that
ŵ∗ = (XTX)

−1
XTy (5)

Then the suitable coefficient can be estimated using the least-squares method.

2.2. Surrogate Models

The surrogate models are very helpful for optimization problems that require multiple
evaluations of the objective function. When each of the objective function evaluations
takes a long time, the optimization itself becomes tricky. In particular, population-based
evolution technology can use black-box simulators in parallel. However, in the presence of
hardware constraints, there is a better method using a surrogate model to approximate the
objective function first and then to use the surrogate model to perform the optimization
process [24].

The surrogate model is considered as using the known independent and dependent
variables’ data to construct the mathematical relation expression. It is different from finding
the unknown parameter in the mathematical relation expression. Therefore, the relational
assumption can obtain an accurate surrogate model. The complete mathematical relation
expression must be set up in the end where, generally, the mathematical relation expression
is continuous. Although there are many discontinuous changes, the surrogate model is more
suitable to analyze continuous change problems. The surrogate model is used to predict
unknown sample points based on known sample points. Under different assumptions,
the construction of the surrogate model can be different. Then the surrogate model can be
divided into two types, namely, a regression model and an interpolation model.

The sample points usually contain a certain “noise” in the regression model so that
this kind of surrogate model does not need to go through each sample point since in that
way it cannot obtain the real mathematical relation. The regression model can not only
predict the value of the unknown point but can also filter the noise of the sample data.
In contrast, the interpolation model goes through each sample point and assumes each
sample point to be correct. The value of the unknown point can be generated through the
interpolation method. As the surrogate model is considered as an estimation of the known
point to the unknown point, it has the error term. Hence, while constructing the surrogate
model, the different assumptions and requirements of error can lead to different surrogate
models [25].
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The aerodynamic airfoil optimization process is very important in aircraft design.
With the development of Computational Fluid Dynamics (CFD) techniques and the vast
research on optimization algorithms in recent years, researchers have made great progress
in aerodynamic shape optimization [25]. Using high-performance computers, the design
period is especially shortened. However, useful parameterizations of airfoil or wing
shapes for engineering models often result in high-dimensional design variables, so it is
a great challenge to search for the optimum design due to the large solution space [9,26].
Aerodynamic designers now demand a quick and efficient approach to airfoil selection
in burdensome engineering projects [10,11]. The key issue is to construct a high-fidelity
efficient surrogate model that can obtain the desired solution as soon as possible [12].

There are some aspects to evaluate the performance of a surrogate model such as
the generalization ability, the ability of the trained prediction model to correctly reflect
samples that do not appear in the training set, ease of implementation, and the training
speed. While training the surrogate model, both the prediction accuracy of the training
set and the generalization ability are very important. However, these two features are not
directly proportional. In some situations, such as for the regression surrogate model, when
the prediction accuracy of the training set reaches a certain level, if it increases continuously,
the accuracy of the sample point outside the training set will decrease. Therefore, the
generalization ability will decrease.

A simple way to improve the generalization ability is to determine the parameters
of the surrogate model many times to improve the prediction accuracy of the training set,
compare it with the prediction accuracy of samples outside the training set, and eventually
choose the better surrogate model between the trials. Another method is to cross-validate
the sample points while training the agent model. Cross-validation means that when
constructing a surrogate model, the sample points are divided into the model-building
part and the verification prediction error part. For the same sample set, different divisions
are performed to obtain different prediction errors and processed to obtain the prediction
accuracy of the sample points in the sample set. Through cross-validation, more stable and
reliable sample points can be obtained [25].

2.3. Artificial Neural Networks

One of the most popular surrogate models is the application of Artificial Neural
Networks (ANNs) [27]. ANN methods became famous as universal function approximators
because they provide good results on unseen data and their evaluation process is relatively
computationally inexpensive. The back propagation (BP) neural network is the essence of
the current ANNs. It is a network that contains multiple hidden layers that can deal with
linear inseparable problems, but it is easy to fall into a local optimal solution and has a
strong sensitivity to the initial weights. On the other hand, ANNs have strong learning
capabilities, fault tolerance, large-scale parallel computing capabilities, fast computing
speed, distributed storage capabilities, and very strong nonlinear mapping capabilities, etc.
The radial basis function (RBF) method is a traditional method for multivariate function
interpolation. Broomhead and Lowe [28] applied the RBF to the design of neural networks
to construct RBF neural networks. It simulates a neural network structure in the human
brain. For a certain local area of the network input space, only a few nodes will affect the
output of the network, which is a local approximation network. Compared with other
types of ANNs, RBF neural networks have a deep physiological basis, fast learning ability,
excellent approximation performance, simple network structure, and have been widely
used in many fields [29,30].

3. The Proposed Methodology
3.1. Finding an Active Space

To reduce the design variables’ dimensionality and accelerate the optimizers, the
methodology introduces the active subspace fundamentals. Active subspace can be used
as an effective dimensional reduction strategy. It includes the positive semidefinite matrix
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which consists of the average products of partial derivatives of the objective interest and
the eigenvectors of a symmetric. If a lower dimension active subspace can be found, the
active input samples’ coordinates can be reduced to construct the equivalent surrogate
model. The main feature of the active subspace is that it consists of important directions of
the input space so that it has a lower dimension compared with the input dimension. The
input samples create the largest change in these directions if the active subspaces exist in a
multivariate problem since it is useful to find reduced coordinates. The average derivative
of f is obtained as follows

C =
∫
(∇xf)(∇xf)T

ρdx = WΛWT, (6)

W = [W1, W2],
[

Λ1
Λ2

]
, (7)

where x ∈ [−1, 1]n includes all the normalized input variables, ρ is the sampling density
on the input space, ∇xf is the gradient of f with respect to x, Λ = diag(λ1, · · · , λn) is the
diagonal matrix of nonnegative eigenvalues, and W is the orthogonal matrix of eigenvectors.
The eigenvalues measure how f changes on average [31] as follows

λi =
∫ (

(∇xf)Twi

)2
ρdx. (8)

Any x can be represented as x = W1y + W2z where y represents the active variables
and z are the inactive variables. If Λ1 contains r < n comparatively larger eigenvalues, i.e.,
there exists a large gap between λr and λr+1, W1 represents the first r eigenvectors and WT

1 x
is the reduced coordinate y, i.e., the active variable [13]. Then, the approximation can be
expressed as

f(x) ≈ g
(

WT
1 x
)

. (9)

When the computational fluid dynamics (CFD) simulations for aerodynamic design
have gradient capabilities (e.g., adjoint-based derivatives or algorithmic differentiation [32]),
the formula in (6) and its eigenpairs can be obtained numerically using the Monte Carlo
method or quadrature rules [8] as follows

C ≈ Ĉ =
1
M

M

∑
j=1
∇Xf

(
xj
)
∇Xf(xj)

T = ŴΛ̂ŴT. (10)

For more common optimization designers that do not have subroutines for gradi-
ents, a diagnostic regression surface with least squares is employed for uncovering one-
dimensional activity. M simulation samples are drawn independently based on the density
ρ and

â = argmin
a

1
2‖ûa− f‖2

2, f ≈ ûa,

û =

1 xT
1

...
...

1 xT
M

, â =

â0
...

ân

, f =

 f1
...

fM

,
(11)

where â is the coefficient describing the subspace combination structure. There are no
eigenvalues computed in (12), but the vector a−0 = [â1, . . . , ân]

T actually approximates a
one-dimensional active subspace linearly as

C ≈
∫

a−0a−0
Tρdx = a−0a−0

T,
w1 = a−0/‖a−0‖.

(12)
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When a linear one-dimensional active subspace exists, this regression surface method
with least squares is much more effective than the finite-difference in (10), which comes
without huge computational cost and solver oscillation issues.

3.2. Equivalent Surrogate Construction
3.2.1. The RBF Neural Network

The RBF neural network is a single hidden-layer forward neural network. The input
layer is composed of some sensing units, which transfer the information to the hidden
layer. A radial basis function is used as the activation function for the hidden layer, which
has a larger number of neurons in the nonlinear conversion from the input space to the
hidden layer space. The output layer acts as the linear combination of the hidden layer’s
output. As shown in Figure 1, there is an RBF neural network structure with I inputs, K
hidden layer neurons, and M outputs. xp = [x1p, x2p, . . . , xIp]

T is the pth input sample,
where p denotes the number of all input samples and I represents the input dimensionality.
ϕp = [ϕ(x1, ck), . . . ,ϕ

(
xp, ck

)
]
T ∈ <p×1 is the output vector of the kth hidden layer neuron

corresponding to the pth input sample, where ck is the center of the neuron. Additionally,
k = 1, . . . , K, W = [w1, w2, . . . , wM] ∈ <(K+1)×M represents the output weight matrix, in
which wm = [w0m, w1m, . . . , wKm]T represents the connection weight between the hidden
layer and the mth output node. Y = [y1, y2, . . . , yP]

T is the output matrix corresponding to
the p input samples and ∑ represents the linear activation function.
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The RBF network model is a flexible, reliable, and short-calculation-time surrogate
model that can solve high-dimensional and high-order nonlinear problems well. The nature
of the RBF network model is determined by the selected basis function. The Gaussian
function is employed, which has the following formula:

ϕ(x, ck,σk) = exp(−‖x− ck‖2

2σ2
k

), k = 1, 2, . . . , K, (13)
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where σk is the width of the kth hidden layer neuron. ‖x− ck‖ is the geometry norm of
x− ck, denoting the radial distance of the sample x and ck. Therefore, considering all the
input samples, the mth node output is calculated as follows

ypm = w0m +
K

∑
k=1

wkmϕ
(
xp, ck,σk

)
, (14)

and the actual output matrix of RBF is obtained as Y = ΦW.

3.2.2. Polynomial Fitting

The least-squares method, which is the most common method to generate a polynomial
equation from a given data set, is used. The concept of polynomial fitting is to use a
polynomial expansion to fit all the input samples in a specified analysis area and determine
the expansion coefficient. This method is useful in some simple models and easy to use. A
polynomial function has the form as

y = a0 + a1x + . . . + akxk, (15)

where the residual is expressed as

R2 ≡
n

∑
i=1

[yi −
(

a0 + a1xi + . . . + akxk
i

)
]
2
. (16)

To find a suitable expansion coefficient that can minimize the residual, partial deriva-
tives can be used. Making each result equal to zero for each direction, the expansion
coefficient as in (17), leads to finding the best value to minimize the residual.

∂
(

R2
)

∂ak
= −2

n

∑
i=1

[
y−

(
a0 + a1xi + . . . + akxk

i

)]
xk = 0. (17)

Then, by performing some matrix transformations [33], a simplified Vandermonde
matrix can be obtained and expressed as XTy = XTXa. Finally, the expansion coefficients

have an equation a = (XTX)
−1

XTy.

4. Experimental Design
4.1. The Standard Test Function

For experimental design, the proposed method was tested with a standard test function
problem and RAE2822 airfoil drag reduction optimization. The standard test function is
analytical and is a well-known standard test problem in the NASA Langley MDO Test Suite
with seven design variables [22]. The mathematical formulation is as follows

f(x) = 0.7854x1x2
2

(
3.3333x2

3 + 14.9334x3 − 43.0934
)
− 1.5079x1

(
x2

6 + x2
7

)
+7.477

(
x3

6 + x3
7

)
+ 0.7854

(
x4x2

6 + x5x2
7

)
(18)

where the variable bounds for the minimization problem are 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8,
7.3 ≤ x4 ≤ 8.3, 7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, and 5.0 ≤ x7 ≤ 5.5. Figure 2 shows what
each of the x variables refers to.
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Figure 2. The diagram of the speed-reducer design problem.

4.1.1. Finding One-Dimensional Active Subspace

We can run a quick-and-dirty check to find whether this standard test function has a
one-dimensional active subspace or not by the following steps:

(1) N samples,
∧
xj ∈ [−1, 1]m.

(2) xj =
1
2

[(
xu− xl) · ∧xj +

(
xu + xl)], where the dot operation is a component-wise multiplication.

(3) fj = f
(
xj
)
.

(4) Then, come up with the coefficients of the following linear regression model

f(x) ≈ ∧a0 +
∧
a1
∧
x1 + . . . +

∧
am
∧
xm (19)

using least squares
∧
a = argmin

u
‖
∧
Xu− f‖2

2, (20)

where

∧
X =


1

∧
x1

...
...

1
∧

xN

,
∧
a =


∧
a0
...
∧

am

, f =

 f1
...

fN

 (21)

(5) Next, compute w = a′/‖a′‖, and a′ = [
∧
a1, . . . ,

∧
am]

T
which represents the coefficient

of the linear regression approximation.

(6) Lastly, plot the result where the first parameter is wT∧xj and the second parameter is
fj [22].

After the dimensional reduction has been performed, the equivalent surrogate model
construction is the next step. It starts by initializing m to 6, which represents the variables
number, and N as the number of samples. Usually, N is initialized randomly within the
range for each input sample variable x1, x2, x4, x5, x6, x7. All variables are represented by an
N× 6 matrix that represents the total initialization value set

xu1-xl1 xu2-xl2 xu4-xl4 xu5-xl5 xu6-xl6 xu7-xl7
xu1-xl1 xu2-xl2 xu4-xl4 xu5-xl5 xu6-xl6 xu7-xl7

...
...

...
...

...
...

xu1-xl1 xu2-xl2 xu4-xl4 xu5-xl5 xu6-xl6 xu7-xl7


N×6

,

where x` represents the lower bound and xu represents the upper bound of the sample
value. After initialization, X is obtained as the value set after the normalization process
where each element in X belongs to [−1, 1]. Then, the value of f(x) corresponding to
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each input sample is calculated. The next step is to generate the coefficients of the linear
regression model using the least-squares method, the basic technique that has already been
discussed earlier. The coefficient equation is as follows

ŵ∗ = (XTX)
−1

XTy = (X)−1(XT)
−1

XTy = (X)−1y (22)

Lastly, plot the figure where x = X ∗w, y = f. The result of X ∗w is an N× 1 matrix.
Therefore, the input x which has six dimensions is converted to one dimension. If the figure
shows the linear relationship between x and y, the one-dimension active subspace is found.

4.1.2. The RBF Network Model

The RBF network model is a surrogate model that can solve high-dimensional and high-
order nonlinear problems well. In general, two steps to are used to train an RBF network.
The first is to determine the center of the neuron ci. Next is to use the Back Propagation
(BP) algorithm to determine the parameters wi and βi. It is worth mentioning that with this
standard test function, it is not easy to use the RBF function. Hence, f(j) = sin(x1(j) + x2(j))
is employed in the dimensional reduction process and then the RBF is used to construct the
surrogate model. From Figure 3, the black cross represents the input sample and the red
line with points is the surrogate model.
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4.1.3. Performing a Polynomial Fit

After finding the active subspace, the next step is to construct the equivalent sur-
rogate model. The Co = polyfit(yy, f, 5) function in Matlab is used to perform a polyno-
mial fit. Both yy and f are the results of the one-dimension active subspace procedure.
Co = polyfit(yy, f, 5) finds the coefficients for a polynomial f of degree five and it is the
best fit for the data. The coefficients in Co are in descending powers, and the length of
Co is equal to 6. After that, the obtained coefficients and the input yy are used to obtain
the corresponding f using the polynomial function y = a0 + a1x + . . . + akxk. Eventually,
the surrogate model can be plotted as in Figure 3, which shows that the surrogate model
achieved a perfect fit.

4.1.4. Optimization Using the Genetic Algorithm

Lastly, the optimization using the genetic algorithm is performed. The goal of the
standard test function is to find the maximum of f(x), within the specified limited range.
First, combine the dimensional reduction part with the polynomial fit part to be a function
called a fitness function. This step is about performing the optimization based on the
surrogate model. Compared with the process of optimization based on the original function,
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using the surrogate model will reduce the computational cost. The fitness function can
be used to tell the selection function, which sample x has a high possibility to remain,
and which x needs to be abandoned. Through multiple iterations and selections, the final
result x and the corresponding function value (fval) can be generated using the genetic
algorithm. The default global optimal solution for the genetic algorithm is to generate
the global minimum while the standard test function aims to find the maximum of f(x).
Therefore, negating the objective function and finding the minimum value is equivalent to
the maximum value of the original objective function.

4.2. Rae2822 Airfoil Drag Reduction Optimization

RAE2822 airfoil drag reduction optimization is more complex, and a general opti-
mization workflow was designed and is shown in Figure 4. A Latin hypercube sampling
(LHS) [22] strategy based on the maximum criterion was employed to generate the training
samples for identifying active subspaces and constructing an RBF neural network in a
reduced dimension. To evaluate the aerodynamic performance, the baseline airfoil was fed
as an input and then the class-shape transformation (CST) parameterization was used to
obtain the parameter needed. After that, an NS solver was used to obtain a high-fidelity
C-mesh. This experimental optimization formulation is as follows

find X∗

min f = Cd
s.t. |∆tmax| ≤ 0.05 ∗ t0,max

X ∈ [−0.01, 0.01]10

(23)

where the optimization objective is to minimize the coefficient of drag Cd and the airfoil
thickness of the maximum tmax is taken as the constraint. For the design, in the optimization
process, one/two-step optimization, i.e., gradient-based optimizers combined with the
Multi-Island Genetic Algorithm (MIGA) [22], can be chosen and the constraints are handled
by punishment [34]. The MIGA has the feature that each set of probable solutions is
divided into several probable solutions called “islands”. On each island, the selection,
crossover, and mutation operations can be performed separately. During this process, some
of the individuals are selected from each island and some of the individuals are migrated
to different islands in one iteration and roulette is used to carry out the selection. The
advantage of the MIGA is that it can avoid the local maximum/minimum solution and
suppress the chance of premature convergence. In the design, this work also considers a
sequential least-squares quadratic program (SLSQP) algorithm for the optimum search.
SLSQP has the property to solve nonlinear programming problems. The feasible optimum
solution can be obtained efficiently by using the lower-dimensional RBF neural network
and the two optimization algorithms as shown in Figure 5, which fully verifies the efficacy
of the proposed method.

4.2.1. Finding One-Dimensional Active Subspace and Polynomial Fitting

To evaluate the aerodynamic performance, the baseline airfoil is fed as an input and
then the class-shape transformation (CST) parameterization is applied to obtain the required
parameters. After that, using an NS solver, a high-fidelity C-mesh is obtained. Then, there
are thirty groups of airfoil samples, each X has ten variables, and a corresponding drag
coefficient fm.

A function was designed to find the active subspace and the polynomial fit to construct
the surrogate model. It is worth mentioning that using RBF only will not be sufficient and
it will not provide a good fit. The process starts by loading the data shown in Table 1 and
initializing m and N that represent the number of the original dimension and the number
of the samples, respectively. Next is to initialize both the lower and upper bounds of X.
Notably, the code is the same as the standard test function part where the only difference is
the data.



Symmetry 2022, 14, 1282 12 of 20Symmetry 2022, 14, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 4. C-grid for RAE2822 airfoil optimization problem. 

 

Figure 5. Implementation work-flow of the proposed method. 

4.2.1. Finding One-Dimensional Active Subspace and Polynomial Fitting 

To evaluate the aerodynamic performance, the baseline airfoil is fed as an input and 

then the class-shape transformation (CST) parameterization is applied to obtain the re-

quired parameters. After that, using an NS solver, a high-fidelity C-mesh is obtained. 

Then, there are thirty groups of airfoil samples, each X has ten variables, and a corre-

sponding drag coefficient fm. 

A function was designed to find the active subspace and the polynomial fit to con-

struct the surrogate model. It is worth mentioning that using RBF only will not be suffi-

X

Y

-0.5 0 0.5

-0.5

0

0.5

Figure 4. C-grid for RAE2822 airfoil optimization problem.

Symmetry 2022, 14, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 4. C-grid for RAE2822 airfoil optimization problem. 

 

Figure 5. Implementation work-flow of the proposed method. 

4.2.1. Finding One-Dimensional Active Subspace and Polynomial Fitting 

To evaluate the aerodynamic performance, the baseline airfoil is fed as an input and 

then the class-shape transformation (CST) parameterization is applied to obtain the re-

quired parameters. After that, using an NS solver, a high-fidelity C-mesh is obtained. 

Then, there are thirty groups of airfoil samples, each X has ten variables, and a corre-

sponding drag coefficient fm. 

A function was designed to find the active subspace and the polynomial fit to con-

struct the surrogate model. It is worth mentioning that using RBF only will not be suffi-

X

Y

-0.5 0 0.5

-0.5

0

0.5

Figure 5. Implementation work-flow of the proposed method.



Symmetry 2022, 14, 1282 13 of 20

Table 1. Thirty Groups of Airfoil Samples.

# X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 fm

1 5.2239E-03 8.3188E-03 −4.2653E-04 −7.8705E-03 −3.9396E-03 −8.7505E-03 6.0303E-03 3.7558E-03 4.7809E-04 −5.1587E-03 0.0104
2 7.5769E-04 3.0202E-03 −4.4409E-03 −8.2883E-03 8.7296E-03 4.3952E-03 −3.3393E-03 −9.4321E-04 6.1110E-03 −7.1830E-03 0.0115
3 5.5465E-03 −1.3677E-03 −4.6413E-03 −7.4978E-03 2.0037E-03 −2.5395E-03 −9.8637E-03 6.6072E-03 1.8095E-03 9.5083E-03 0.0099
4 −5.8693E-03 9.0404E-03 −3.7651E-03 4.4414E-03 −8.0366E-03 2.4585E-03 6.6284E-03 −1.7353E-03 −7.1610E-03 7.4779E-04 0.0122
5 −8.2223E-03 7.5726E-03 −2.0727E-03 3.1109E-03 1.3468E-03 −5.7459E-04 9.0071E-03 −6.3634E-03 −5.8676E-03 4.1196E-03 0.0124
6 8.1707E-04 7.9984E-03 −5.8060E-03 4.6342E-03 9.8523E-03 −7.9928E-03 −6.2891E-04 −9.6184E-03 −2.9229E-03 2.8257E-03 0.0108
7 5.0448E-03 −3.1049E-03 −6.3506E-03 6.8255E-03 −3.0960E-04 9.1091E-03 −5.0752E-03 3.0762E-03 −9.6682E-03 7.6554E-06 0.0122
8 −9.9445E-03 −5.4919E-03 7.6001E-03 5.9273E-03 −6.3772E-03 2.8449E-03 −3.2565E-03 −7.2955E-04 8.7269E-03 2.1741E-04 0.0112
9 −6.5070E-03 9.4273E-03 5.7492E-03 −9.0571E-03 −5.6415E-03 −5.9955E-04 4.2464E-04 3.1260E-03 −3.1011E-03 6.0278E-03 0.0110
10 8.6204E-03 −7.9403E-03 1.8081E-03 −9.7962E-03 5.8831E-03 −2.2466E-03 2.7385E-03 −4.7402E-03 7.3609E-03 −1.5914E-03 0.0111
11 −2.6034E-03 −5.2149E-03 5.0761E-03 7.4148E-03 8.3352E-03 8.5895E-04 −8.1410E-03 3.4674E-03 −6.3417E-03 −1.1206E-03 0.0110
12 5.5958E-03 −9.8474E-04 8.5413E-03 −5.9100E-03 2.4753E-03 1.8399E-03 −7.8765E-03 −3.9489E-03 6.7858E-03 −9.9150E-03 0.0109
13 −6.6130E-04 −7.8024E-03 −8.0007E-03 −2.9666E-03 7.7051E-03 3.3700E-03 5.6572E-03 −5.1858E-03 6.8478E-04 9.3021E-03 0.0124
14 −2.1074E-03 −6.0943E-03 7.8883E-03 9.8570E-03 −4.0314E-03 2.0526E-03 −1.4696E-03 4.4952E-03 1.9334E-03 −8.2352E-03 0.0112
15 7.4774E-03 8.2133E-03 −1.9441E-03 −3.9881E-03 −8.6936E-03 −6.5846E-03 1.6255E-03 2.5137E-03 −5.4360E-03 5.6222E-03 0.0104
16 −8.8679E-03 9.9088E-03 −7.3109E-03 −3.5621E-03 4.2742E-03 4.2929E-04 3.1330E-03 −6.9564E-04 7.8892E-03 −5.6389E-03 0.0114
17 −2.1208E-04 9.9879E-03 −4.5501E-03 6.1145E-03 4.6515E-03 −8.7713E-03 −7.7139E-03 −3.3496E-03 2.7838E-03 1.1211E-03 0.0098
18 −1.9226E-03 −9.6458E-03 −6.0210E-03 3.7168E-03 5.0344E-03 8.3876E-04 9.4140E-03 7.1223E-03 −4.7965E-03 −2.2746E-03 0.0122
19 8.0945E-03 −7.2009E-04 4.3260E-03 3.9173E-03 7.1523E-03 −8.1513E-03 −2.6276E-03 −7.8920E-03 −5.7090E-03 1.6529E-03 0.0105
20 6.9282E-03 1.4102E-03 4.1943E-03 −8.1628E-03 −7.5749E-03 −3.4882E-04 2.5600E-03 −4.4640E-03 −2.4143E-03 9.5677E-03 0.0113
21 4.6659E-05 9.2363E-03 2.7294E-03 −6.0931E-03 −8.4641E-03 −1.7497E-03 −2.9203E-03 5.9939E-03 7.0701E-03 −5.6481E-03 0.0103
22 −1.7438E-03 −8.6021E-03 7.5280E-03 −3.6632E-03 −4.8755E-03 −7.0142E-03 9.6291E-03 3.6970E-03 4.1864E-03 1.4500E-05 0.0109
23 3.2198E-03 −1.6536E-03 −3.9081E-03 6.2123E-03 −5.6820E-03 −9.3666E-03 −6.3436E-03 9.5249E-03 1.1314E-03 5.9499E-03 0.0093
24 −2.5373E-03 4.0397E-03 −8.6254E-03 8.8565E-03 −1.2233E-03 1.9692E-04 7.2079E-03 −5.3855E-03 3.5910E-03 −6.1257E-03 0.0120
25 −3.2448E-03 2.6240E-03 1.4064E-03 −7.1431E-03 −4.6324E-03 8.3810E-03 7.2690E-03 4.6024E-03 −1.2669E-03 −9.9292E-03 0.0127
26 5.5984E-03 −9.1964E-03 −2.1674E-03 −5.0888E-03 2.3077E-03 9.9186E-03 7.3413E-03 5.8130E-04 −1.7206E-03 −7.0018E-03 0.0131
27 −5.9895E-03 3.1427E-03 −6.5347E-03 9.0541E-03 −3.2169E-04 −8.3178E-03 1.4633E-03 6.4858E-03 −3.2183E-03 4.0661E-03 0.0103
28 8.4534E-03 6.8543E-03 −4.9004E-03 −2.5741E-03 4.9523E-04 −1.8872E-04 −6.2136E-03 2.5302E-03 −8.7092E-03 4.8387E-03 0.0108
29 −6.5977E-03 2.5726E-03 1.2790E-03 −1.4369E-03 6.0094E-03 5.8326E-03 9.0636E-03 −4.1876E-03 −9.4503E-03 −3.8241E-03 0.0133
30 3.8272E-03 −3.0399E-03 6.8947E-03 −5.3703E-03 5.4007E-03 −1.2038E-03 1.6030E-03 8.6865E-03 −9.3967E-03 −6.9194E-03 0.0112
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4.2.2. Optimization with Constraint

The goal of this optimal process is to use the genetic algorithm with a defined constraint∣∣∣∆tmax||0,max

∣∣∣. Hence, in the genetic algorithm function, a constraint is added to satisfy this
condition. The function is designed to obtain the maxthick from the function geometry
with an inequality constraint. Furthermore, In the geometry function, the data of basic
airfoil and data of thickness is loaded to generate the maxthick based on the input x. The
first standard test function had only one objective function. However, in the airfoil, the
thickness needs to be considered as the second objective. Under this constraint, finding the
optimal result can be more complex and costly.

5. Results and Discussion

Firstly, the aim of the speed reducer design problem (as in (17)) is to minimize the
weight of f(x). Fifty training samples were used for active subspace identification. A
scatter plot of wT

1 x versus f is given in Figure 6, which reveals a dominant one-dimensional
active subspace.
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Figure 7 shows the blue hollow points which represent the input sample after di-
mensional reduction, and the red line represents the polynomial fitting that generates the
surrogate model. This reveals the good fitting ability for polynomial fitting. In addition, it
confirms the generation of a good surrogate model after fitting.

After optimization, the obtained results are shown in Table 2. Ten results for f(x) and
the corresponding x1, x2, x4, x5, x6, x7 values were recorded. It is concluded from the data
that the minimum of f(x) was around 3915.55, and through calculating the variance of each
variable xi, the result shows that the variance was less than 0.05, which means that the
optimization result is very stable.

Secondly, RAE2822 airfoil optimization is considered the lift-constrained drag min-
imization. The optimization objective is to minimize the coefficient of drag Cd. The
optimization is performed with conditions such as Ma = 0.729, Re = 7.0× 107, α = 2

◦
.

The optimization formulation is as in (23) where the variation of tmax being within 5% is
also taken as a constraint. In the experiment, 66,521 grids and 30 training samples were
generated by a high-fidelity C-mesh of RAE2822 airfoil. These samples solved the problems
of active subspace identification. A scatter plot of wT

1 x versus f is given in Figure 8, which
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reveals a one-dimensional active subspace to enable a high-fidelity quadratic response
surface model. The LOOCV was also employed for checking the approximation error, and
the obtained result was a small MAE of 1.14E-4 as shown in Table 3.

Furthermore, the optimization results of the drag coefficient, thickness, and the cor-
responding variable x are shown in Table 4. The input baseline conforms to the standard
RAE2822 airfoil whose CFD solution is shown in Figure 9.
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Table 2. The optimization results for the standard test function.

# X1 X2 X4 X5 X6 X7 Result of F(x)

1 3.5957 0.7984 8.2682 8.2742 3.8993 5.4974 3.9067e+03
2 3.5969 0.7998 8.2727 7.7931 3.8983 5.4999 3.9213e+03
3 3.5997 0.7969 8.2968 8.2412 3.8973 5.4913 3.8957e+03
4 3.5995 0.7999 8.0032 8.2785 3.8980 5.5000 3.9264e+03
5 3.5986 0.7992 7.9973 8.2633 3.8918 5.4996 3.9357e+03
6 3.5865 0.8000 8.2437 8.2744 3.8999 5.4998 3.9262e+03
7 3.5991 0.7992 8.2812 8.2894 3.8945 5.4989 3.8955e+03
8 3.5995 0.7999 8.2813 8.2733 3.8999 5.4985 3.9311e+03
9 3.5890 0.7995 8.1505 8.2060 3.8940 5.4974 3.8973e+03

10 3.5960 0.7998 8.1445 8.2316 3.8972 5.4984 3.9196e+03

Table 3. Approximation and optimized result of RAE2822 airfoil.

CFD Simulation Error

MAE - 1.14e−4
Optimized drag coefficient 0.0082 2.96%
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Figure 9. Comparison of the baseline and optimized geometries: (a) RAE2822 mach contours;
(b) optimized mach contours.



Symmetry 2022, 14, 1282 17 of 20

Table 4. Optimization result of RAE2822airfoil drag problem.

# X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 fm Thickness

1 0.0100 0.0100 0.0100 0.0100 −0.0100 −0.0100 −0.0100 0.0100 0.0100 0.0100 0.0082 0.1204
2 0.0100 0.0100 0.0100 0.0100 −0.0100 −0.0100 −0.0100 0.0100 0.0100 0.0100 0.0082 0.1204
3 0.0100 0.0100 0.0100 0.0100 −0.0100 −0.0100 −0.0100 0.0100 0.0100 0.0100 0.0082 0.1204
4 0.0100 0.0100 0.0100 0.0100 −0.0100 −0.0100 −0.0100 0.0100 0.0100 0.0100 0.0082 0.1204
5 0.0100 0.0100 0.0100 0.0100 −0.0100 −0.0100 −0.0100 0.0100 0.0100 0.0100 0.0082 0.1204

The convergence plot by the GA yields an optimized airfoil illustrated in Figure 9b. The
optimality criterion was set as 10−8. Besides, the surface pressure coefficient distributions
and shapes of the RAE2822 baseline and optimized airfoil are compared in Figures 10 and 11,
respectively. Concerning the objective, the drag coefficient was optimized from 0.01123
to 0.0082 with approximately 27% reduction. Table 4 compares the CFD simulation and
surrogate prediction of the optimized airfoil and verifies the design accuracy. As the design
space [−0.01, 0.01]10 is not sufficiently large, the shock wave effects were not optimized
to the minimum. However, the discovered active subspace improved the optimization
efficiency by more than two orders compared with the traditional optimization using
several hundreds of CFD simulations.
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Lastly, the work aimed to find the existing active subspace and employ the reduced
dimension sample to generate the surrogate model. The optimization result was obtained
for the multivariate problem. In some other research works, a sensitivity analysis was
traditionally employed [10] to determine which design parameters have a larger influence
on the system response, and the less influential parameters are ignored. However, in the
proposed method, all design variables were considered to generate a one-dimension active
subspace, which has comparatively higher precision. In addition, other approaches usually
combine the dimensional reduction with the polynomial fit. In this work, the RBF was
formerly used to reduce the problem dimension and then to generate the surrogate model.

To further investigate the proposed method’s performance, Table 5 lists a comparison
between some of the latest methods and the proposed one. These results have been
interpreted in the way they were reported in each work. The reported results prove that
the proposed method has higher accuracy rates in optimizing the problem coefficients.
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Table 5. Comparison of the aerodynamic coefficients for the RAE2822airfoil results.

Method Cl Error (Cl) Cd Error (Cd)

Zhang et al. [35] 0.683 8.07% 0.0138 8.69%
Wang et al. [36] 0.824 7.78% 0.0106 8.30%
Wu et al. [37] 0.824 8.20% 0.0113 7.79%
Present work 0.820 6.89% 0.0136 2.96%

Figure 11. Comparison of the baseline and optimized airfoil shapes.

The results show that both the standard test function and RAE2822 airfoil drag re-
duction optimization had a one-dimensional active subspace, which enabled an efficient
surrogate model and accelerated the optimization design. The high precision of the second
case was proved, and the result was improved after the optimization process. Therefore,
combining big data analysis and machine learning, the intelligent optimization method
based on the adaptive surrogate model was constructed in reduced dimensionality and
its application is the current development trend. Hence, this proposed technique has
great significance, which can reduce the time and space complexity, save the overhead of
unnecessary features, and improve the optimization effect.

6. Conclusions and Recommendations

In this paper, the high effectiveness of the surrogate model usage in active subspaces
was proved in both standard test function and RAE2822 airfoil drag reduction optimization.
Compared with the traditional optimization using hundreds of time-consuming simula-
tions, the optimization efficiency is expected to be improved by two orders, which would
be greatly significant for existing real-world applications. The approximation error was
rather small, which means that this process generates a high precision. The surrogate
model constructed in reduced dimensionality also largely alleviates the complexity of
conventional multivariate surrogate modelling. Future work can extend the advantages of
the proposed method to more aerodynamic shape optimization or other related problems.
Though a quick-and-dirty check for a one-dimensional active subspace has limitations, the
average derivative of the f and the eigenvalues can be computed for r-dimensional active
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subspaces, which would be widely applied. This method is of great significance to the
current high-dimensional reduction field and also provides a beneficial reference for other
methods in tackling such multivariate problems more effectively.
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