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Smart cities have been developed over the past decade, and reducing traffic congestion has been the top
concern in smart city development. Short delays in communication between vehicles and Roadside Units
(RSUs), smooth traffic flow, and road safety are the key challenges of Intelligent Transportation Systems
(ITSs). The rapid upsurge in the number of road vehicles has increased traffic congestion and the number
of road accidents. To fix this issue, Vehicular Networks (VNs) have developed many new ideas, including
vehicular communications, navigation, and traffic control. Machine Learning (ML) is an efficient approach
to finding hidden insights into ITS without being programmed explicitly by learning from data. This
research proposed a fusion-based intelligent traffic congestion control system for VNs (FITCCS-VN) using
ML techniques that collect traffic data and route traffic on available routes to alleviate traffic congestion
in smart cities. The proposed system provides innovative services to the drivers that enable a view of traf-
fic flow and the volume of vehicles available on the road remotely, intending to avoid traffic jams. The
proposed model improves traffic flow and decreases congestion. The proposed system provides an accu-
racy of 95% and a miss rate of 5%, which is better than previous approaches.
� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Computers and Artificial Intel-
ligence, Cairo University. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Smart city development is coupled with a significant shift
regarding planning and adopting advanced technologies to assem-
ble ‘‘smarter” cities to enhance people’s quality of life. The Euro-
pean Commission launched innovative and apparent creativity on
smart cities in four areas: electricity, buildings, heating and cooling
systems, and transport [1]. An intelligent transportation solution
can improve traffic flow in smart cities by monitoring traffic pat-
terns and adjusting traffic signal timing. The aim is to ascertain
and assist sustainable forms of transportation, to boost an Intelli-
gent Transportation System (ITS) occupying real-time information,
Traffic Management Systems (TMSs) to avoid congestion, safety,
and green applications (e.g. to minimize the utilization of fuel,
gas, and energy) [2]. ITS leverages novel and emerging technologies
to make mobility more pleasant and cost-effective in a smart city.

In recent years, one of the fundamental dilemmas with regard
to transportation systems has been traffic congestion, which must
be solved to minimize fuel waste, accidents, traffic jams, and driver
frustration. The majority of traffic delays in metropolitan areas
occur because of the high number of vehicles. Traffic regulation
lar net-
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during rush hours is an important issue [3]. Transportation net-
works are becoming an integral part of human life due to the short-
age of land resources and saturated transportation infrastructure
in metropolitan areas. As a result of this overcrowding, numerous
traffic-related drawbacks have arisen in urban zones where people
must move quickly from one location to another [4].

With the recent advances in Artificial Intelligence (AI), and
Machine Learning (ML) ITS, and smart environmental monitoring
in smart cities monitor the factors influencing the environment
more precisely, with an optimum control of pollution, traffic con-
gestion and other adverse effects. Traffic congestion affects peo-
ple’s quality of life because it reduces traffic performance and
increases severe environmental pollution. Hence, the country’s
production, economic development, and human activities are
influenced by traffic congestion. The most pressing issue in urban
planning is determining how to address traffic congestion effec-
tively [5]. Traffic congestion management is a significant area of
study, with many solutions emerging from miscellaneous research
projects in the field over the last several decades [6]. As time
passes, traffic data collection and intelligent transportation sys-
tems have evolved in response to these issues [7].

Traffic congestion management is critical for making it easier to
drive on highways. Most traffic signals are preprogrammed. This
does not support real-time conditions and causes traffic conges-
tion. There is an increased need for density-driven traffic move-
ment that is based on existing traffic conditions. Traffic junction
signals play a crucial role in reducing congestion [8]. Another rea-
son for traffic congestion is a lack of road infrastructure. The dri-
ver’s waiting time has risen as a result. This is primarily due to
the inefficient operation of traffic signals. Approaches focused on
Vehicle-to-Vehicle (V2V) communication are unable to reliably
measure traffic congestion volume. Additionally, traffic signalling
systems with a fixed operating period cannot handle shifting traffic
volumes, resulting in long traffic queues at road crossings [9].

ITS includes intelligent traffic signal controls, highway manage-
ment, and emergency services management. These systems cap-
ture real-time traffic data and proceed with required steps to
prevent road traffic congestion. Traffic congestion on the roads of
cities can be predicted precisely by smartphone applications such
as Google and Apple Maps based on sensor data collected from
highways and city road monitoring devices [10]. Real-time traffic
alerts on exit roads may help the driver choose the best route from
his present location. Drivers like to be informed about the state of
congestion at upcoming intersections in order to save time.

The proposed system is based on VNs coupled with fused ML
techniques, measures the density of traffic congestion, and pro-
vides the user with an alternative path for travelling by using a
mobile application that can save time.
Fig. 1. Architecture of a VN [21].
2. Literature review

In the past several years [2–7], a number of studies have
focused on the topic of traffic congestion. Using Information and
Communication Technology (ICT) [11] and Internet of Things
(IoT) [12,13] applications, multiple types of research to monitor
road traffic congestion and traffic control have been suggested in
the literature to increase the efficiency of the current TCCS. Using
a real-time dynamic traffic control scheme to route vehicles
smartly will improve traffic movement on roads, allowing facilities
to be used more effectively and creating an atmosphere conducive
to resolving city gridlock.

The Internet of Vehicles (IoV) is a network of vehicles equipped
with sensors that may play a prime role in TMS by linking physical
devices over the internet to provide more precise, quick, and accu-
rate results. In IoV, every database is stored on a computer via the
2

internet. Remote access to IoV components reduces human
involvement [14].

VN is a specific case of wireless communication technology that
is hampered by rapid topological changes due to the fast move-
ment of vehicle nodes [15]. Given the rising quantity of vehicles
prepared by wireless and communication devices, intravehicular
communication has become an auspicious field of research. VNs
empower many applications by providing wireless communication
technology to vehicle nodes. This can involve accident prevention,
dynamic route planning, and real-time traffic status monitoring.
VN is a new mobile network (MN) that includes vehicles that man-
age themselves as mobile nodes. VN has been proposed to enhance
safety and comfort with the aid of V2V and Vehicle-To-Roadside
(V2R) communications. VNs have been created to improve driver
safety and comfort with the assistance of V2V and V2R communi-
cations in vehicular environments [16,17]. VNs are now considered
an infrastructure for ITSs with the growing number of autonomous
vehicles in smart cities. The deployment of a VN is a solution to
communicate between vehicles [18]. The architecture of a VN is
presented in Fig. 1.

ML is an application of artificial intelligence that permits sys-
tems to automatically learn from data and make decisions without
human assistance. ML enables systems to learn from experience
and recover without being explicitly programmed. ML can mecha-
nize and increase the efficiency of intelligent traffic congestion
control systems (TCCSs) while reducing travelling costs more effi-
ciently and accurately in a reliable way [19]. Data fusion is a pro-
cess of combining data from one and multiple sources with
insufficient raw data to gather precise, comprehensive, and unified
entity information. At the decision level, fusion is used to produce a
single decision after combining decisions from multiple sources to
create a more intelligent decision on action. By taking the data pat-
terns of various algorithms, the fusion of decision-making data and
ML can help make better choices [20].

In [22], researchers suggested a real-time TMS composed of a
small system of roadside units, junction units, and mobile units
that determine the time of traffic lights to avoid gridlock develop-
ment. This system also includes a web-based application for dri-
vers of vehicles that uses data from real-time traffic monitoring
to show the current traffic flow so that approaching vehicles take
alternate routes to help reduce the gridlock. The limitations of this
technique are a lack of performance and a secure mechanism for
communication between nodes.

Reference [23] used IoT and sensing technology to create a
framework for real-time traffic monitoring. Ultrasonic sensors
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were utilized to monitor traffic status in lanes. The controller col-
lects this information from sensors and processes it. The processed
data are then sent to the server via a Wi-Fi module. The traffic sig-
nal control system, which is based on perceiving traffic status in
lanes, controls traffic. If a road has a significant amount of traffic,
then it receives the highest priority, which means it takes a long
time for vehicles to travel, and it will be given a long green-
signal time. This proposed system is reliable, easy, and inexpen-
sive. This presented system has limited calculation capacity and
needs the proper execution of instructions by highly skilled
programmers.

In [24], researchers developed a platform focused on Wireless
Sensor Networks (WSNs) to acquire, fuse, and store city traffic data.
The extended city intelligent transportation system is more versa-
tile and efficient than other current city transportation systems. It
is impossible to use WSNs for high-speed communication because
they are designed for low-speed applications and are too expensive
to build. In [25], the authors developed a vehicle traffic control
mechanism via Usage-based Insurance (UBI) and smartphone-
based measurement methods. This architecture is designed to
model, perceive, and monitor traffic flow. This system has seven
layers, starting with physical smartphones and servers and ending
with the overall business strategy at the top.

In [26], researchers developed a model using a Random Forest
Classification (RFC) algorithm of ML to construct a model for traffic
congestion state perception. The RFC has high robustness, high effi-
ciency, and a predictive accuracy of 87.5%. In addition, the general-
ization error is short and can be foreseen efficiently. The
limitations of this research are that other machine learning tech-
niques may provide more robust and accurate results. In [27],
the authors developed a method for identifying road traffic conges-
tion using GPS, a webcam, and an opinion poll. The sliding window
technique extracted the vehicle’s movement patterns and fed them
into an Artificial Neural Network (ANN) and J48. The J48 model
performs better with 91.29% accuracy, which is lower than that
of the proposed FITCCS-VN using machine learning techniques.

In [28], the authors developed an Unmanned Aerial Vehicle
(UAV)-based traffic monitoring system using a Convolutional Neu-
ral Network (CNN). The camera on the UAV captured traffic images,
and the system had a 91.67% accuracy based on the traffic situa-
tion. In [29], the authors developed a data-fusion-based TCCS
based on a CNN and Long Short-TermMemory (LSTM) frameworks.
The CNN was used to classify spatial data. LSTM for historical data
had a 92.3% and 7.7% accuracy and miss rate, respectively, whereas
ML approaches may achieve better results. Different machine
learning techniques such as computational intelligence
approaches, fuzzy systems [30,31,32,33,34,35,36], swarm intelli-
gence [37], evolutionary computing [38], soft computing [39],
genetic algorithms [40], neural networks [41], and deep extreme
learning machines [42] have proven to be credible solutions for
smart cities [43,44,45], smart health [46,47,48], and wireless com-
munication [49,50] by different researchers in different research
domains.
Table 1
Comparison of Previous Published Works with Proposed FITCCS-VN.

Authors Preprocessing Layer U

A. Saikar et al., 2017 [22] No N
V.S. Nagmode et al., 2017 [23] No N
Y. Liu et al., 2017 [26] No N
T. Thianniwet et al., 2010 [27] No N
L. Jian et al., 2010 [28] Yes N
S. Khan et al., 2021 [29] Yes N
Proposed FITCCS-VN Yes Ye

3

3. Limitations of previous work

This paper presents a fusion-based intelligent traffic congestion
control system for vehicular networks using machine learning
techniques. Traffic congestion and the number of traffic accidents
have increased rapidly. Proposed model solved the problem of
short delays in communication between vehicles and roadside
units, smooth traffic flow, and road safety by intelligent trans-
portation systems. The aim of this study is to provide innovative
services to drivers that enable a view of traffic flow and the volume
of vehicles available on the road remotely, intending to avoid traf-
fic jams. This study develops a fusion-based intelligent traffic con-
gestion control system for vehicular networks using machine
learning technology to alleviate traffic congestion. This contribu-
tion offers pathways to improve traffic flow and decrease
congestion.

Table 1 shows that in the research mentioned above, there are
several limitations including a lack of performance, the need for
a secure communication mechanism between nodes [22], limited
computational capacity [23], and lower accuracy [26,27,28,29].

The proposed techniques play a vital role in providing a secure
communication mechanism between nodes by using a VN archi-
tecture, improving performance through a preprocessing layer to
mitigate noisy data and achieving higher accuracy, higher execu-
tion capacity, and more robust decision-making by including fused
ML techniques.

4. Proposed fusion-based intelligent traffic congestion control
system

In this research, an intelligent TCCS is used for smart cities to
monitor and control traffic congestion using machine learning
techniques. This research proposed a FITCCS-VN using ML tech-
niques. Figs. 2 and 3 present a complete picture of the proposed
FITCCS-VN in which data are collected via IoV-enabled devices.
This system allows signals from one junction to send and update
data to another junction. Subsequently, the sensory layer receives
data from sensors, and then these sensing values are passed
through the preprocessing, training, performance, and validation
phases.

Fig. 2 shows that VN has become a prominent network model
with the development of communication technology. VN enables
vehicles to broadcast with V2V and exchanges information with
the Vehicle to Infrastructure (V2I). The collection of sensory data
from wireless communication vehicles instead of costly cellular
communication with the help of VN thus becomes possible. First,
data can be assembled from roadside base stations via V2V or
V2I communication. Then, the base station (server) can transfer
the collected data directly to the data centre to further monitor
and route traffic congestion.

Fig. 2 also depicts a proposed model in which the traffic conges-
tion data sensed from the VN are received from the sensory layer
and passed through preprocessing training and performance lay-
se of VN Decision-Making Fused ML techniques

o No No
o Yes No
o Yes No
o Yes No
o Yes No
o Yes Yes
s Yes Yes



Fig. 2. Proposed FITCCS-VN using ML techniques.
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ers. After the performance layer, the output is forwarded to edge
computing. In the validation phase, the learned data are imported
from edge computing to further predict whether there is traffic
congestion.

As shown in Fig. 3, training and validation are the two phases of
the proposed FITCCS-VN using ML techniques. Each step is further
divided into stages. The 1st phase collects the dataset from various
traffic control sensors installed on multiple VNs. To implement the
proposed research model, a prelabelled VN dataset is selected. This
dataset contains 2282 instances and 515 features, of which 514
Fig. 3. Flowchart of Proposed FITC

4

attributes are independent and one, the output class, is dependent.
The next layer is preprocessing, which mitigates the noisy data
using moving averages and normalization. Then, the preprocessed
data are divided into 70% training and 30% testing datasets. After
this process, the training data are sent to the training layer,
whereas the testing dataset is stored in edge computing. A classifi-
cation process is performed in the training layer to predict the traf-
fic congestion using both ML techniques [ANN and support Vector
Machine (SVM)]. Each neuron has a function of activation, such as
fðxÞ ¼ SigmoidðxÞ in the hidden layer. The sigmoid function for
input and the hidden layer of the proposed FITCCS-VN can appear
as.

z ¼ 1

1þ e
� p2þ

Pn

j¼1
tjj� 1

1þe
�p1þ
Px

i¼1
xij��rið Þ

 ! !
wj

;where j

¼ 1;2;3 . . .n&j ¼ 1;2;3 . . . e ð1Þ

ȸz ¼ 1

1þ e
�

 
p2þ
Pn

j¼1
tjz� 1

1þe
�p1þ
P�E�

i¼1
xij��rið Þ

 !!
wz

where
j ¼ 1;2;3 � � �n& z ¼ 1;2;3 � � ��r
In the above equation, �ri, xij, p1, tjk, and p2 represent the input

features, weights amongst the ith input and jth hidden layer neu-
rons, bias of hidden layers, weights between the jth hidden layer
and ʞth output layer neurons, and the bias of output layer, respec-
tively. These are listed in Table 2.

The minimum mean square error can be calculated as below:

A ¼ 1
2

X
z

sz �ȸz
� �2 ð2Þ

where sz shows the estimated output, and outz is a deliberate out-
put. Both layers’ weights in change can be calculated as below:

DW / � @A
@W

Dtj;z ¼ � �
@A
@mj;z

ð3Þ
CS-VN using ML techniques.



Table 2
Dataset structure [52].

Sr. No. Feature Datatype

1 region_id Integer
2 region_name String
3 road_category_name String
4 road_category_description String
5 total_link_length_km Float
6 total_link_length_miles Float
7 pedal_cycles Integer
8 two_wheeled_motor_vehicles Integer
9 cars_and_taxis Integer
10 buses_and_coaches Integer
11 lgvs Integer
12 all_hgvs Integer
13 all_motor_vehicles Integer
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Eq. (3) can be written as.

Dtj;z ¼ � �
@A
@ȸz

� @ȸz

@wk
� @wk

@mj;z
ð4Þ

The above equation after simplification can be written as.

Dxi;j ¼ e
X
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nj ¼
X
z
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�ȸjð1�ȸjÞ

The hidden and output layers are presented in Eq. (6), which
updates the weight and bias.

mþj;z ¼ mj;z þ kFDtj;z ð6Þ
Updating the weight and bias among the input layer and hidden

layer is presented in Eq. (7):

xþ
i;j ¼ xi;j þ kFDxi;j ð7Þ
kF denotes the learning rate of FITCCS-VN using ML techniques.

The convergence of FITCCS-VN using ML techniques depends upon
the careful selection of kF.

As we know, during SVM the line equation is.

ӿ ¼ ʜʯ þ ϛ ð8Þ
In Eq. (8), ’ʜ’ represents the line slope and ’ϛ’ the intersect.

Hence,

ʜʯ � ӿþ ϛ ¼ 0

Let �
�
¼ ʯ ; ӿð ÞT and –

�
¼ ʜ;�1ð Þ: Then, the equation becomes.

–:
�!

�
�
þϛ ¼ 0 ð9Þ

This equation comes from two-dimensional vectors. However,
Eq. (9), defined as the hyperlane, performs for any number of

dimensions. The direction of a vector �
� ¼ ʯ ; ӿð ÞT is –

�
and is distinct

as.
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– ¼ ʯ
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ʯ2
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q

As we know that

cosðhÞ ¼ ʯ
j �j jj and cosðlÞ ¼

ӿ
j �j jj

Eq. (10) can also be written as.
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�!

�
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h ¼ t
Â��l
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i¼1
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The dot product can be compared using Eq. (11) for f dimen-
sional vectors:

Let

B ¼ M ð– :� þ ϛÞ
If sign (Β) > 0, then this is appropriately classified; and if sign

(Β) < 0, then it is imperfectly classified.
Calculate f on a training dataset by dataset P:

Bi ¼ Mi ð– :� þ ϛÞ
ϸ is the functional margin of the dataset.

ϸ ¼ min
i¼1���::Ԏ

Bi

When comparing hyperplanes, one through the largest ϸ will be
chosen. ϸ is the geometric margin of the dataset. The goal is to dis-
cover an optimal hyperplane, which means finding the optimal
hyperplane values of – and B. Lagrangian function:

Ӑ –; ϛ;lð Þ ¼ 1
2
–:– �

XԎ
i¼1

li ½M : –:� þ ϛð Þ � 1�

r–Ӑ –; ϛ;lð Þ ¼ – �
XԎ
i¼1

li Mi �i ¼ 0 ð12Þ

rϛӐ –; ϛ;lð Þ ¼ �
XԎ
i¼1

li Mi ¼ 0 ð13Þ

From Eqs. (16) and (17), we get.

– ¼
XԎ
i¼1

li Mi �i and
XԎ
i¼1

li Mi ¼ 0 ð14Þ

while substituting the Lagrangian function Ӑ:



Fig. 4. Rule surface of Proposed FITCCS-VN based on SVM and ANN.
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– l ; ϛð Þ ¼
XԎ
i¼1

li �
1
2

XԎ
i¼1

XԎ
j¼1

liljMi Mj �i�j

Thus,

max
l

XԎ
i¼1

li �
1
2

XԎ
i¼1

XԎ
j¼1

liljMi Mj �i�j ð15Þ

subject to li � 0; i ¼ 1 � � � :Ԏ;PԎ
i¼1liMi ¼ 0.

The Lagrangian multiplier technique is extended to Karush-
Kuhn-Tucker (KKT) situations due to inequalities in the con-
straints. KKT’s complimentary status states that

li Mi –i:�
� þ ϛ

� �� 1

 � ¼ 0 ð16Þ
�� denotes the optimal point.
l is the positive value in addition to l because the additional

aspects are � 0.
Thus,

Mi –i: �
� þ ϛ

� �� 1
� � ¼ 0 ð17Þ
The points near the hyperplane are called support vectors.

Equation (17) states that

– �
XԎ
i¼1

li Mi �i ¼ 0

– ¼
XԎ
i¼1

li Mi �i ð18Þ

To compute the value of ϛ we get.

Mi –i: �
� þ ϛ

� �� 1
� � ¼ 0 ð19Þ
In Equation (19), multiply both sides by M to get.

M2
i –i: �

� þ ϛ
� ��Mi
� � ¼ 0

where M2
i = 1

–i: �
� þ ϛ

� ��Mi
� � ¼ 0

ϛ ¼ Mi � –i: �
� ð20Þ

Then

ϛ ¼ 1
ᴙ

Xᴙ
i¼1

ðMi � – :�Þ ð21Þ

ᴙ is the number of support vectors. On one occasion, the hyper-
plane will create perceptions. The hypothesis function is.

c –i

� � ¼ 1if–:� þ ϛ > 0
0if–:� þ ϛ 	 0

� 	
ð22Þ

The hyperplane is classified as traffic congestion (positive), and
the point below the hyperplane is classified as no traffic congestion
(negative). Therefore, the primary purpose of the SVM algorithm is
to perceive a hyperplane that can disperse the data precisely, in
addition to the best need to be found, which is often called a
hyperplane.

After the training layer, the output is sent to the performance
layer to predict the traffic congestion based on the accuracy and
miss rate regardless of whether the learning criteria are met. If
the answer is ‘NO’, then the training layer is updated, and so on.
However, if the answer is ’YES’, then the output of both approaches
is stored in ANN and SVM-based edge databases separately and
sent to the Fuzzy Inference System (FIS)-based fusion approach.
The FIS-based fusion approach further checks and is updated if
the learning criteria are not met. In the case of yes, the output is
stored in the fused database on edge computing.
6

In the validation phase, the test data stored in edge computing
and the learned patterns are imported from the edge database and
referred to the ML techniques to predict whether traffic congestion
is found. If the answer is ‘No’, then the process is discarded; and if
the answer is ‘Yes’, then the message indicates that traffic conges-
tion has been found.

The fusion approach using ML techniques develops and applies
fuzzy logic to optimized classification algorithms. ML techniques
(ANN and SVM) produce logic using fuzzy rules. The conditional
statements to create fuzzy logic are given below.

1. If ANN is No and SVM is No, then FITCCS-VN is No
2. If ANN is No and SVM is Yes, then FITCCS-VN is Yes
3. If ANN is Yes and SVM is No, then FITCCS-VN is Yes
4. If ANN is Yes and SVM is Yes, then FITCCS-VN is Yes

Fig. 4 illustrates that if the value of SVM lies between 60 and
100 and ANN lies between 60 and 100, then FITCCS-VN is good
(yellow). If SVM lies between 40 and 60 and ANN lies between
40 and 60, then FITCCS-VN is satisfactory (green). If SVM lies
between 0 and 40 and ANN lies between 0 and 40, then FITCCS-
VN is satisfactory (blue).

Fig. 5 demonstrates that if the value of ANN is no and SVM is no,
then the proposed FITCCS-VN is no. Fig. 6 shows that if the value of
ANN is yes and SVM is no, then the proposed FITCCS-VN is yes.
Fig. 7 demonstrates that if the value of ANN is yes and SVM is
yes, then the proposed FITCCS-VN is yes.

5. Simulation results

In this proposed FITCCS-VN using ML techniques, a TCCS is
implemented on a dataset [52]. The data were divided randomly
into 70% training (1879 samples) and 30% validation (403 sam-
ples). The proposed system calculated the output using multiple
statistical measures, as described in Equations (23) through (31).

Sensitivity ¼
P

TruePositiveP
ConditionPositive ð23Þ

Specificity ¼
P

TrueNegativeP
ConditionNegative ð24Þ

Accuracy ¼
P

TruePositiveþP TrueNegativeP
TotalPopulation

ð25Þ

Miss� Rate ¼ 1� Accuracy ð26Þ

Fallout ¼
P

FalsePositiveP
ConditionNegative ð27Þ



Fig. 5. Lookup diagram of Proposed FITCCS-VN (No).
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Fig. 6. Lookup diagram of the Proposed FITCCS-VN (Yes).

Fig. 7. Lookup diagram of Proposed FITCCS-VN (Yes).

Table 3
Training of proposed FITCCS-VN using the ML technique (ANN) when identifying
LikelihoodPositiveRatio ¼
P

TruePositiveRatioP
FalsePositiveRatio ð28Þ
traffic congestion.

Proposed Model Training

Input Total samples (1879) Output

LikelihoodNegativeRatio ¼

P
TruePositiveRatioP
FalsePositiveRatio ð29Þ
Expected output Predicted Positive Predicted Negative
293 Positive True Positive (TP) False Negative (FN)

237 56
1586 Negative False-Positive (FP) True Negative (TN)
PositivePredictiveValue ¼

P
TruePositiveP

PredictedConditionPositive ð30Þ

31 1555

Table 4
Validation of proposed FITCCS-VN using ML technique (ANN) when identifying traffic
congestion.

Proposed Model Validation

Input Total samples (403) Output
Expected output Predicted Positive Predicted Negative
53 Positive True Positive (TP) False Negative (FN)

40 13
350 Negative False-Positive (FP) True Negative (TN)

11 339
NegativePredictiveValue ¼
P

TrueNegativeP
PredictedConditionNegative ð31Þ

Tables 3, 4, 5, and 6 show the training and validation of ML
techniques (ANN and SVM) in terms of accuracy and miss rate. In
addition to comparisons, the various statistical measures used for
performance are deliberate from diverse metrics named as accu-
racy, sensitivity, specificity, miss-rate, fall-out, Likelihood Positive
Ratio (LR+), Likelihood Negative Ration (LR-), Precision, and nega-
tive predictive value. By contrast, the True Positive Rate (TPR) is
expressed as sensitivity, True Negative Rate (TNR) as specificity,
False Negative Rate (FNR) as miss-rate, False-Positive Rate (FPR)
as fall-out, and Positive Predictive Value (PPV) as precision.
7



Table 5
Training of proposed FITCCS-VN using ML technique (SVM) when identifying traffic
congestion.

Proposed Model Training

Input Total samples (1879) Output
Expected output Predicted Positive Predicted Negative
293 Positive True Positive (TP) False Negative (FN)

228 65
1586 Negative False-Positive (FP) True Negative (TN)

56 1530

Table 6
Validation of proposed FITCCS-VN using ML technique (SVM) when identifying traffic
congestion.

Proposed Model Validation

Input Total samples (403) Output
Expected output Predicted Positive Predicted Negative
53 Positive True Positive (TP) False Negative (FN)

35 18
350 Negative False-Positive (FP) True Negative (TN)

21 329
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Table 3 shows the proposed FITCCS-VN using ML techniques
within the training phase. A total of 1879 samples are used within
the training separated into 293 and 1586 positive and negative
samples, respectively. It is ascertained that 237 samples are appro-
priately predicted as positive and that there is no traffic conges-
tion, but 56 records are inaccurately predicted as negative, which
means there is traffic congestion. Similarly, a total of 1586 samples
are collected, where negative indicates traffic congestion, in which
1555 samples are appropriately predicted as negative, meaning
there is traffic congestion, and 31 samples are wrongly predicted
as positive, which means there is no traffic congestion.

Table 4 shows the proposed FITCCS-VN using ML techniques
within the validation phase. A total of 403 samples were used
within the validation, divided into 53,350 positive and 53,350 neg-
ative samples. It is ascertained that 40 samples are appropriately
predicted as positive and that there is no traffic congestion, but
13 records are inaccurately predicted as negative, which indicates
traffic congestion. Correspondingly, a total of 350 samples are col-
lected, where negative indicates traffic congestion, in which 339
samples are appropriately predicted as negative, meaning there
is traffic congestion, and 11 samples are wrongly predicted as pos-
itive, which means there is no traffic congestion.

Table 5 shows the proposed FITCCS-VN using ML techniques
within the training phase. A total of 1879 samples were used
within the training, separated into 293 and 1586 positive and neg-
ative samples, respectively. It is ascertained that 228 samples are
correctly predicted as positive and that there is no traffic conges-
tion, but 65 records are incorrectly predicted as negative, which
indicates traffic congestion. Similarly, a total of 1586 samples are
collected, where negative indicates traffic congestion, in which
1530 samples are appropriately predicted as negative, meaning
Table 7
Performance evaluation of proposed FITCCS-VN using ML techniques in training and valid

Accuracy (%) Sensitivity TPR (%) Specificity TNR (%) Mis

ANN Training 95.4 80.8 98.0 4.6
Validation 94.0 75.4 96.8 6.0

SVM Training 93.5 77.8 96.4 6.5
Validation 90.3 66.0 94.0 9.7
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there is traffic congestion, and 56 samples are wrongly predicted
as positive, which means there is no traffic congestion.

Table 6 shows the proposed FITCCS-VN using ML techniques
within the validation phase. A total of 403 samples were used
within the validation, divided into 53,350 positive and 53,350 neg-
ative samples. It is ascertained that 35 samples are appropriately
predicted as positive and that there is no traffic congestion, but
18 records are inaccurately predicted as negative, which means
there is traffic congestion. Correspondingly, a total of 350 samples
are collected, where negative means there is traffic congestion, in
which 329 samples are appropriately predicted as negative, which
means there is traffic congestion, and 21 samples are wrongly per-
ceived as positive, which means there is no traffic congestion.

Table 7 shows the performance of the proposed FITCCS-VN
using ML techniques in terms of accuracy, sensitivity, specificity,
miss rate, and precision within the training and validation phases
w.r.t. ANN and SVM, respectively. This indicates that the proposed
system using the ANN approach within training provides 95.4%,
80.8%, 98.0, 4.6%, and 88.4% in terms of accuracy, sensitivity, speci-
ficity, miss rate, and precision. Within validation, the proposed sys-
tem provides 94.0%, 75.4%, 96.8%, 6.0%, and 78.4% accuracy,
sensitivity, specificity, miss rate, and precision, respectively. In
addition, more statistical measures of the proposed system can
predict values such as fall-out, likelihood positive ratio, likelihood
negative ratio, and negative predictive value within training. The
results were 0.019, 42.526, 0.047, and 96.5% and validations of
0.031, 24.323, 0.062, and 96.3%, respectively.

This indicates that the proposed system with the SVM approach
within training provides 93.5%, 77.8%, 96.4%, 6.5%, and 80.2% in
terms of accuracy, sensitivity, specificity, miss rate, and precision.
Within validation, the proposed system provides 90.3%, 66.0%,
94.0%, 9.7%, and 62.5% accuracy, sensitivity, specificity, miss rate,
and precision, respectively. In addition, more statistical measures
of the proposed system can predict values such as fall-out, likeli-
hood positive ratio, likelihood negative ratio, and negative predic-
tive value within training. These results are 0.035, 22.045, 0.281,
and 95.9% and validation of 0.06, 11.005, 0.361, and 94.8%,
respectively.

Moreover, the simulation results of the fused ML techniques of
the proposed FITCCS-VN are listed in Table 8. Twenty random val-
ues were deployed using the fusion of ANN and SVM, of which 19
were precise according to human decision-making principles of
FITCCS-VN. In contrast, one matter was thought to be low but
was indicated as normal per the proposed FITCCS-VN using ML
techniques and incorrectness. The probability of correctness or
accuracy of the proposed FITCCS-VN using ML techniques is found
to be 95%, and the miss rate is 5%.

Table 9 elaborates on the simulation of the proposed FITCCS-VN
with fused machine learning techniques. The accuracies and miss
rates of the ANN, SVM, and fusion-based FITCCS-VN are 94%/6%,
90.3%/9.7%, and 95%,/5%, respectively.

Table 10 shows a performance comparison of the proposed
FITCCS-VN using the ML techniques with previous approaches
ation using diverse statistical measures.

s-Rate FNR (%) Fall-out
FPR

LR + ve LR -ve PPV (Precision) (%) NPV (%)

0.019 42.526 0.047 88.4 96.5
0.031 24.323 0.062 78.4 96.3
0.035 22.045 0.281 80.2 95.9
0.06 11.005 0.361 62.5 94.8



Table 8
Fusion results of proposed FITCCS-VN using ML techniques (ANN and SVM).

ANN SVM The proposed FITCCS-VN
using ML techniques

The human expert
decision of FITCCS-VN

Probability of
correctness

Probability of
errors

1 12.4 (N) 20.5 (N) 23.1 (N) No 1 0
2 28.9 (N) 7.73 (N) 23.1 (N) No 1 0
3 17.9 (N) 65 (Y) 72.1 (Y) Yes 1 0
4 10.6 (N) 13.2 (N) 23.1 (N) No 1 0
5 24.3 (N) 22.3 (N) 23.1 (N) No 1 0
6 10.6 (N) 64.1 (Y) 72.1 (Y) Yes 1 0
7 74.8 (Y) 13.2 (N) 72.1 (Y) Yes 1 0
8 81.2 (Y) 6.82 (N) 72.1 (Y) Yes 1 0
9 72 (Y) 68.6 (Y) 72.1 (Y) Yes 1 0
10 12.4 (N) 20.5 (N) 23.1 (N) No 1 0
11 24.3 (N) 7.73 (N) 23.1 (N) No 1 0
12 77.5 (Y) 15 (N) 72.1 (Y) Yes 1 0
13 17.9 (N) 79.5 (Y) 72.1 (Y) Yes 1 0
14 91.3 (Y) 90.5 (Y) 72.1 (Y) Yes 1 0
15 24.3 (N) 66.8 (Y) 72.1 (Y) Yes 1 0
16 83.9 (Y) 65 (Y) 72.1 (Y) Yes 1 0
17 77.5 (Y) 13.2 (N) 72.1 (Y) Yes 1 0
18 77.5 (Y) 66.8 (Y) 72.1 (Y) Yes 1 0
19 93.1 (Y) 79.5 (Y) 72.1 (Y) Yes 1 0
20 27.1 (N) 84.1 (Y) 23.1 (N) Yes 0 1

Table 9
ANN and SVM results of proposed FITCCS-VN.

ANN SVM Fusion based FITCCS-VN

Accuracy (%) 94.0 90.3 95
Miss Rate (%) 6.0 9.7 5

Table 10
Comparison results of proposed FITCC-VN using ML techniques with literature.

Accuracy
(%)

Miss-
Rate (%)

Thianniwet T. et al. (2010), [27] Training 91.29 8.71
Validation 90.11 9.89

Jian, L. et al., (2019) [28] Training 91.67 8.33
Validation 90.5 9.5

Khan, Sulaiman et al., (2021) [29] Training 93.6 6.4
Validation 92.3 7.7

Pushpi and Dilip Kumar (2018) [51] Training 91.2 8.8
Validation 90.6 9.4

Proposed system using ML technique
(ANN)

Training 95.4 4.6
Validation 94.0 6.0

Proposed system using ML technique
(SVM)

Training 93.5 6.5
Validation 90.3 9.7

Proposed FITCCS-VN using ML
techniques

Validation 95 5
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[27,28,29,51]. It is indicated that the proposed techniques provide
accurate results compared to previously published approaches.
6. Conclusion

A Vehicular Network (VN) is a self-organized, service-oriented,
multipurpose communication network that enables communica-
tion between vehicles and roadside infrastructure for message
exchange. In a dense traffic scenario, the load generated by the
traffic may exceed the road’s capacity, causing traffic congestion.
This research proposed a fusion-based ITCCS-VN using ML tech-
niques to assemble data from an IoV-enabled VN, and then evalu-
ated it intelligently to predict and control traffic congestion.
Evaluation of the simulation results indicated that the proposed
9

FITCCS-VN using ML techniques exhibits 95% accuracy and a 5%
miss rate, which are better than those of previous approaches
[27,28,29,51]. In the future, the proposed system accuracy may
be improved by using federated learning and Alexnet.
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