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Introduction
Urban expansion and the growth of cities in particular has led to an increase in factory 
activity and consequently an increase in various transportation services as companies 
in a variety of sectors strive to meet the economic and commercial needs as well as the 
service requirements of the urban population [1].This trend has generated an increase in 
logistical research aimed at ensuring that transportation services are both time-efficient 
and cost-effective in order to improve geographical coverage, speed of service and cus-
tomer satisfaction [2–4].

One of the most important approaches that has been adopted to try to enhance the 
efficiency and growth of distribution systems is the vehicle routing problem (VRP), 
which was first proposed by Dantzig and Ramser in 1959 [5]. The VRP emerged from 
an existing optimization problem, namely, the traveling salesman problem (TSP) [6] and 
remains the most structured and researched transport model available. The VRP model 
attempts to discover how to deliver goods to customers by using a fleet consisting of a 
predefined number of vehicles.
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The vehicle routing problem (VRP) is a catch-all term for a group of issues involving 
“vehicles” completing visits to “customers.” The basic practical difficulty of distributing 
products to geographically dispersed consumers utilizing a number of trucks operating 
out of a single goods depot gives rise to these problems [7]. The challenge is to route the 
cars in such a way that the overall distance traveled (or time spent, money incurred, etc.) 
is kept to a minimum [8].

The VRP, also described as “vehicle scheduling,” “vehicle dispatching,” or simply “deliv-
ery,” emerges frequently in real-world circumstances that are not directly connected to 
the delivery of commodities [9–11]. Collection of mail from mailboxes, pick-up of chil-
dren by school buses, house-call tours by a doctor, preventive maintenance inspection 
tours, laundry delivery, and so on are all VRPs in which the “delivery” operation can be a 
collection, collection and/or delivery, or neither; and in which the “goods” and “vehicles” 
can take a variety of forms, some of which may not even be of a physical nature [12].

The key goal is to find the minimum-length route that starts and ends in a depot, tak-
ing into account a number of variants such as the time window, service time, and vehi-
cle capacity among others [13]. The VRP is a combinatorial optimization and NP-hard 
problem [14, 15] and several algorithms have been proposed in order to solve it, yet it 
remains an incredibly important challenge in the field of combinational optimization 
[16]. The only small-scale VRP technology yet discovers the ultimate global solution [17].
The expertise of stream VRP algorithms is divided into exact and heuristics algorithms 
[18].

Classical heuristics for the VRP can be split into constructive heuristics and improve-
ment heuristics [19]. The origin heuristics forever, progress from a solution to a best one 
in its neighborhoods [20].Heuristic methods execute a comparatively limited explora-
tion of the search space and typically require a short computation time to output solu-
tions that have good fitness [21]. Classification heuristics for the VRP include the savings 
algorithm, route-first cluster-second, cluster-first route-second, and insertion heuristics. 
Two kinds of improvement algorithms are suitable for the VRP, namely, intra-route heu-
ristics and inter-route heuristics [22].

Metaheuristics are also widely used in optimization problems including the VRP 
[23–25].These smart algorithms are suitable for solving hard optimization problems that 
require a large amount of time because they are able to reach optimal solutions in a fast 
time [26, 27], which is largely due to their utilization of random search instead of full 
search when exploring the search space [28].

The major goal of developing metaheuristic algorithms is to address complicated opti-
mization issues where previous optimization approaches have failed. These techniques 
are now widely regarded as some of the most practical approaches to solve a wide range 
of real-world issues. Metaheuristic could be used to solve any problem that can be 
expressed as a problem of optimization technique. Also, They are ease of implementa-
tion as well as they are efficiency and flexibility [29].

Many metaheuristic algorithms have been applied to optimization problems, such 
as the mine blast algorithm [30], monarch butterfly algorithm [31], and many others 
[32–36]. The metaheuristic algorithms that have been applied specifically to the VRP 
include artificial bee colony (ABC) [37], practical swarm optimization(PSO) [38], Ant 
Colony Optimization (ACO)[39],harmony search [40],genetic algorithm [41] and others 
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[42–49]. In line with the literature, this paper uses the Harris hawks optimization (HHO) 
algorithm to solve the VRP [50], as this algorithm has been shown to have scientific 
strength in the area of complex optimization problems [51].

The cooperative behavior and pursuit manner of Harris’ hawks in nature, known as 
surprise pounce, is the fundamental inspiration for HHO. Several hawks work together 
to attack on a victim from different directions in an attempt to catch it off guard. Based 
on the dynamic nature of events and the prey’s escape behaviors, Harris hawks can dis-
play a variety of pursuit patterns. To design an optimization method, this work math-
ematically duplicates such dynamic patterns and behaviors [50, 52, 53]. As an outcome, 
the Harris hawks optimization (HHO) algorithm was used to solve the VRP in this paper.

The rest of this paper is organized as follows: In "Related works", the related works 
on VRP are described. Then, in "Harris Hawks optimization", the HHO algorithm 
is discussed in detail. This is followed by a demonstration of the proposed method of 
using HHO for VRP in "Proposed method: HHO for VRP". After that, in "Experimen-
tal results", the experimental results are presented and analyzed. Finally, in "Conclusion" 
some conclusions are made and some possible directions for future improvements are 
suggested.

Related works
In recent times, metaheuristic algorithms have become an important part of the meth-
ods that have been developed to solve the VRP, largely because these algorithms have the 
ability to find optimal solutions due to their robust local and global search capabilities. 
Several previous studies have used these algorithms to solve the VRP, including Szeto, 
et al. [54], who presented a heuristic ABC for the capacitated VRP (CVRP). To improve 
the original heuristic for solving the CVRP, an improved version of the ABC heuristic 
was developed. Computing tests revealed that the improved heuristic ABC is capable of 
providing significantly stronger solutions for the CVRP than the original ABC and that it 
also consumes less computing energy.

On the other hand, Wang, et al. [55] addressed the periodic VRP with time window 
and service selection issue by building a heuristic algorithm based on improved ant 
colony optimization (IACO) and simulated annealing (SA), which they named multi-
objective simulate annealingant colony optimization (MOSA-ACO). Also using SA, 
Rabbouch et al. [56] proposed an empirical-type SA to solve the CVRP. Their approach 
works incrementally by exploiting the last component of the worst practicable option. 
The results showed that their method has high search precision, optimal quicker entry, 
and the ability to classify all optimal rates while increasing the SA algorithm’s conver-
gence speed. In another SA-based research study, Ilhan [57] proposed using the popu-
lation-based SA algorithm to solve the CVRP. Three operators were used to build the 
process: swap, inclusion and return. In fact, the algorithm used has been evaluated on 63 
occasions. The research findings demonstrated that the proposed method has the ability 
to evaluate the best pathways for 23 instances, along with the presence of the percentage 
error value and the run time.

Another type of VRP was addressed in [58], where the author suggested an optimiza-
tion algorithm for a hybrid ant colony and applied it to the multi-depot VRP (MDVRP). 
The suggested algorithm is based on a mixture of probabilistic techniques that are based 
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on the normal actions of ants when foraging for food as well as on specific techniques 
that are based on the computational concepts of annealing. The experimental results 
showed the proposed algorithm is superior to other methods as it is able to produce 
the smallest mean error. Also, in [59], the authors recommended a way to minimize the 
MDVRP in terms of both distance traveled and time consumed by using inferential GAs. 
In their method, the proposed algorithm assigns each depot to its nearest customer and 
allows each customer to draw one customer at a time before all customers are allocated 
to drive. In addition, the algorithm uses Dijkstra’s shortest path to evaluate each depot’s 
closest customer. The findings showed that the suggested algorithm was calculated from 
distance and time of travel and thus confirmed its efficacy.

On the other hand, Sethanan and Jamrus [60] suggested the use of both an integer 
linear programming formulation and a novel hybrid differential evolution algorithm 
involving a fuzzy logic controller genetic operator to solve the backhaul and heteroge-
neous fleet routing problem for multi-trip vehicles. In their work, the objective was to 
minimize the cumulative cost associated with the distance traveled by using the tradi-
tional method of differential evolution and differential evolution with a selected genetic 
operator and real-settings fuzzy logic controller.

Meanwhile, in [61], the authors suggested a mathematical model to deal with the issue 
of the electric VRP (EVRP), taking into account the demands of electrical charging in 
the operations. To solve this optimization problem, the authors built a dedicated tabu 
search (TS) algorithm. The results of the improvement the VRP using this approach has 
obtained more reliable results than other methods. In another hybrid approach, Akbar 
and Aurachmana [62] also used a TS algorithm, in this case with a GA, in order to refine 
the CVRP with time windows (CVRPTW). One of the shortcomings of their work is 
its lack of animation by which to visualize the outcome and thereby encourage future 
studies. Nevertheless, their findings indicated that the proposed hybrid algorithm not 
only successfully minimizes the current route, but also estimates the optimal number of 
homogeneous fleets.

Based on the foregoing review of related works, it can be seen that several different 
metaheuristic algorithms have been used to solve the VRP and its variants. The results 
obtained by previous research studies showed that these smart algorithms can find the 
best routes for vehicles to reach customers in the least possible time. The success of 
these algorithms is due to the precision of their random search mechanism. and to the 
balance they achieve between the local and global search processes. It therefore seemed 
logical to investigate whether HHO would be able to find optimal solutions for the VRP.

Harris Hawks optimization
The HHO algorithm is a new swarm intelligence optimization algorithm that was pro-
posed by Heidari et al. in 2019 [50]. The algorithm has been shown to perform efficiently 
in the optimization domain relative to other metaheuristic algorithms. Moreover, the 
algorithm can be extended to solve multiple types of optimization problems successfully, 
exhibiting a good level of performance [63]. Centered on the effects of such an algorithm 
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in problems of intricacy optimization, the study uses it to increase the efficiency related 
to the VRP [50].

The basic notion behind the improved algorithm is derived from how Harris hawks hunt 
for food under desert conditions which are characterized by a scarcity of food [64]. To find 
their prey, Harris hawks engage in a variety of complex processes of mutual hunting and 
coordination to find, encircle, flush out and ultimately strike a possible target or prey. The 
HHO algorithm mimics the behavior of these hawks that monitor and catch their prey by 
means of a “surprise pounce”, which is also known as the “seven kills” strategy [50].In this 
strategy, many hawks collaboratively target a single prey, such as a rabbit that is out in the 
open rather than hiding under cover of vegetation for example, by using different tech-
niques and they ultimately converge on this prey [65].

The attack can be terminated promptly by catching the shocked target in just a few sec-
onds. However, depending on the prey’s escape capability and habits, the hawks may need 
to undertake several, short-length, swift dives that are likely to be in the vicinity of the prey 
for several minutes [51] before they are successful in executing the seven kills strategy. 
Harris hawks display a variety of types of chasing, which depends not only on the prey’s 
escape habits, but also on a diverse range of environmental circumstances. For instance, in 
a swooping chase scenario, the most successful hawk (leader) swoops at the prey to capture 
it, but it can miss the prey (i.e., not find the target solution) because in essence the search 
and attack is carried out by a single member of the group. By increasing its vulnerability, 
Harris hawks proceed to locate an exhausted rabbit. In the end, when only one hawk, usu-
ally the most seasoned and strongest, can easily catch the exhausted rabbit and share it with 
the extant members, it cannot run away from the team besiege [66].

The HHO algorithm consists of three phases: (1) discovery or exploration (global search), 
(2) transformation from exploration to exploitation, and (3) exploitation (local search) [64]. 
For the intention of finding and investigating all aspects relevant to these propositions, 
the discovery phase reflects the change to many locations and a new venue. In addition, 
this phase illustrates a new technique for studying. The transformation from discovery 
to exploitation phase is regarded as crucial to the success of metaheuristic algorithms. In 
HHO, in order to transform the specified phases, the escape energy of the rabbit prey is 
used. The utilization process, on the other hand, reflects the installation and use of such 
sites and enables the available resources to be completely implemented [67].

Exploration phase

In this algorithm, the Harris hawks perch in certain positions frequently and wait to spot a 
target based on two techniques that are formulated in Eq. (1):

where X(t + 1) is the hawks’ location vector in the next iteration t, Xrabbit(t) is the rab-
bit’s position, X(t) is the hawks’ current location vector, r1, r2, r3, r4 and q are random 

(1)X(t + 1) =

{

X(t + 1) = Xrand(t) − r1
∣

∣Xrand(t) − 2r2X(t)
∣

∣, q ≥ 0.5
Xrabbit(t) − Xm(t) − r3(LB+ r1(UB− LB)), q < 0.5
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numbers within (0,1) that are modified in each iteration, LB and UB represent the upper 
and lower variable borders, Xrand(t) is a hawk randomly selected from the current pop-
ulation, and Xm(t) is the mean variable position. The average position of the hawks is 
reached by using Eq. (2).

where the position of each hawk in iteration t is indicated by Xi(t) and N refers to the 
total number of hawks.

Transition from exploration to exploitation

In order to represent this step, the rabbit’s energy is formulated as in Eq. (3):

where E denotes the fleeing energy of the rabbit, T is the cumulative number of itera-
tions, and E0 is the rabbit’s initial energy state, and t is the current iteration.

Exploitation phase

In the final exploitation phase, the hawks employ four different types of besiege tech-
nique to capture their prey.

Soft besiege

The following rules in Eqs. (4) and (5) describe the soft besiege behavior of the Harris 
hawks:

where X(t) is the variance between the rabbit’s place vector and the specific posi-
tion in iteration t during the escape process, r5 is a random number within (0, 1), and 
J = 2(1 − r5) defines the rabbit’s random leap ability. To mimic the nature of the rabbit’s 
movements, the J value varies arbitrarily with each iteration.

(2)Xm(t) =
1

N

∑N

i=1

(

Xi(t)

)

,

(3)E = 2E0

(

1−
t

T

)

,

(4)X(t + 1) = �X(t)− E
∣

∣JXrabbit(t) − X(t)
∣

∣,

(5)�X(t) = Xrabbit(t) − X(t),
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Hard besiege

For a hard or intense besiege, the existing positions of the hawks are adjusted by 
Eq. (6):

Soft besiege with progressive rapid dives

When a soft besiege is accompanied by rapid dives, it is assumed that the hawks 
decide on adopting this technique based on the following rule in Eq. (7):

It is also assumed that they use the following rule in Eq. (8) to dive at the prey based 
on Lévy flight-based patterns:

where D is the issue aspect, S is a random vector of size 1 multiplied by D, and LF is the 
Lévy flight function that is determined using Eq. (9): where µ and σ are random values 
within (0, 1), and β is the default constant that is fixed to 1.5.

The final technique that is used to upgrade the positions of the hawks that are in the 
process of undertaking a soft besiege with dives can then be carried out by Eq. (10):

where Y and Z are obtained by using Eqs. (7) and (8).

Hard besiege with progressive rapid dives

The final technique involves the combination of a hard besiege and rapid dives, as for-
mulated in Eq. (11):

where Y and Z are obtained by using the new rules in Eqs. (12) and (13):

All of these steps of HHO are described in the following algorithm pseudocode [50]:

(6)X(t + 1) = Xrabbit(t) − E|�X(t)|.

(7)Y = Xrabbit(t) − E
∣

∣JXrabbit(t) − X(t)
∣

∣.

(8)Z = Y + S × LF(D),

(9)LF(x) = 0.01×
µσ

|v|
1
β

, σ =







A(1+ β)× sin
�

�β
2

�

Ŵ

�

1+β
2

�

× β × 2

�

β−1

2

�







1
β

(10)X(t + 1) =

{

Y , f (Y ) < f (X(t))
Z, f (Z) < f (X(t))

(11)X(t + 1) =

{

Y , f (Y ) < f (X(t))
Z, f (Z) < f (X(t))

(12)Y = Xrabbit(t) − E
∣

∣JXrabbit(t) − X(t)
∣

∣.

(13)Z = Y + S × LF(D).
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Proposed method: HHO for VRP
In this paper, we suggest using HHO to construct a routing strategy by focusing on mini-
mizing the number of vehicles in two steps:

Stage 1

The HHO global search functionality is used in the first step, with the HHO fitness func-
tion defined as:

where |σ| is the number of routes in the σ routing strategy and c(σi) is the travel expense 
of the σi route ϵ σ.

In the first iteration, the rabbit randomly chooses a direction of travel. A fitness 
function is calculated when it hits its destination (e.g., the transport distance) and the 
artificial pheromones are evaluated and identified by the network. These artificial phero-
mones affect the next hawk’s preference. In the subsequent iterations, the rabbits appear 
to take the shorter direction. In addition, the chance of better pathways being chosen 
can be improved by artificial pheromones.

The decrease in the number of vehicles is typically the complication, instead of the 
primary feature of the searching process, of reducing transport costs. In VRP-SPDTW, 

(14)f (σ ) =

(

|σ |,

|σ |
∑

i=1

c(σi)

)

,
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because reducing the number of vehicles and travel costs are both important targets, we 
concentrate on one of them in each process.

Stage 2

In the second stage, the local search of HHO minimizes the travel cost by using the rout-
ing plans that were generated in Stage 1 as the initial solution. The search in this stage 
continues until a certain stopping condition is met. Figure 1 shows the mechanism of the 
suggested method.

There are three conditions that must be taken into account when solving the routing 
problem: (1) the vehicle starts from the warehouse and returns to it, (2) the vehicle vis-
its one customer only in one journey and then returns to the place of departure i.e., the 
warehouse) before going to another customer and (3) the customer may not request a 
delivery from more than one vehicle.

Furthermore, each vehicle must not exceed a specific load (capacity), which is defined 
as follows:

where N is the number of nodes (customers) and K is the number of vehicles.
As for addressing the issue of time complexity, the HHO’s computational complex-

ity depends primarily on three processes: initialization, fitness assessment, and hawk 
update [43]. The time complexity of the initialization process is O(N) for N hawks. While 
O(T × N) + 25 O(T × N × D) is the computational complexity of the updating process, 
which consists of looking for the best location and updating all the hawks’ location vec-
tors, where T is the maximum number of iterations and D is the dimension of unique 
problems. Consequently, O(N × (T + TD + 1)) is the computational complexity of HHO.

Experimental results
To provide a fair scientific examination, the experiments used the same work settings 
and situations. The proposed method was performed on a Notebook that had a Win-
dows 10 operating system, An  Intel® CoreTM i7-6006U processor operating at 2.00 GHz 

(15)Capacity = ceil

(

N

K

)

,

Fig. 1 Applying HHO in VRP
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(four CPUs) and 2.0 GHz, with 8 GB of RAM, powers the software and its operation. 
The model was created using Matlab R2016a.

Since the input variables play an essential role in the consistency of the solutions. The 
input parameters were set in the experiments due to the obvious results as in [65]. In 
order for the outcomes of the experiment to be identical, the configurations of the algo-
rithms are equivalent. The final set of parameters is specified in Table 1.

Application of HHO to 10 VRP scenarios

First, the HHO algorithm was applied to solve the VRP using 10 scenarios, where each 
scenario consisted of different numbers of customers and vehicles. In the first scenario, 
there were eight customers and three vehicles. These numbers were increased in each 
subsequent scenario to 70 customers and eight vehicles in the last scenario. This was 
done to make the problem more complex in order to measure the efficiency of the pro-
posed approach using HHO in reaching the optimal solution for different sized prob-
lems. To assess the performance of HHO in each scenario, three criteria were calculated: 
(1) the minimum objective function obtained, (2) the minimum number of iterations 
required, and (3) the satisfaction of capacity constraints as explained in "Stage 2" Table 2 
shows the results obtained by HHO for the 10 scenarios.

It can be seen from Table 2 that, in all 10 scenarios, HHO succeeded in reaching the 
optimum solution with a relatively low number of iterations. In addition, HHO was able 
to satisfy the capacity constraints in all scenarios.

Figure  2 depicts the routes taken by the vehicles in order to reach the customers 
according to the conditions of the VRP for each scenario. In the figure, the route of each 
vehicle is depicted using a different color and is the route used to reach each customer at 
the lowest possible cost.

As seen in Fig. 2, in all ten simulations. HHO was able to find the best solution with 
a very small number of iterations. Furthermore, in all instances, HHO was able to meet 
the capacity limits. As the number of customers increases, it takes a lot of roads that 
must be followed in order to reach all customers as soon as possible; therefore, the num-
ber of roads in the first simulation is different from what it is in the tenth.

Comparison of HHO against SA and ABC

In order to evaluate the efficacy of the proposed method, the outcomes of the proposed 
method were compared with those of two methods in the literature, namely, SA [48] 

Table 1 Parameter settings

Parameter Value

T: maximum number of iterations 200

N: population size 100

Lower bound (LB) 0

Upper bound (UB) 1

Number of hawks 10

Number of iterations 30

Model.etu (learning rote) 0.0001
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Table 2 Results obtained by HHO for VRP

Simulation number Minimum objective function obtained Minimum number of 
iterations required

Sim. 1
 8 customers
 3 vehicles

220.1634 13

Sim. 2
 10 customers
 3 vehicles

269.8302 28

Sim. 3
 14 customers
 4 vehicles

219.2101 51

Sim. 4
 20 customers
 4 vehicles

297.457 63

Sim. 5
 25 customers
 5 vehicles

251.976 172

Sim. 6
 30 customers
 5 vehicles

316.1595 193

Sim. 7
 40 customers
 6 vehicles

319.0379 157

Sim. 8
 50 customers

298.1563 194

 7 vehicles

Sim. 9
 60 customers
 7 vehicles

401.5839 156

Sim. 10
 70 customers
 8 vehicles

423.0535 186

Fig. 2 VRP route maps for each simulation by HHO
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and ABC [45]. SA and ABC are effective and largely used in many recent works in opti-
mization field [68–72]. On the other hand, the comparison was made with two types of 
algorithms; single-based algorithm represented by SA, and population-based algorithm 
represented by ABC. The comparison with two different types of research method is 
very important to judge the proposed approach. The comparison was made by using the 
same parameter settings and criteria outlined above. Table 3 shows the outcomes of all 
three methods.

As can be seen from Table 3, in sim.1 with eight customers and three vehicles, all three 
methods obtained the same minimum objective function of 220.1634 and satisfied the 
capacity constraints. However, HHO did so more quickly in just 13 iterations. However, 
in sim. 2 with 10 customers and three cars, SA performed better than HHO and ABC 
with an objective function of 269.8302. However, again the least number of iterations 
was achieved by HHO with 28 iterations. All three methods met the capacity constraints 
of sim.2.

Table 3 Comparison of HHO, SA and ABC for VRP

Simulation number Method Minimum objective function 
obtained

Minimum number of 
iterations required

Sim. 1
 8 customers
 3 vehicles

HHO 220.1634 13

SA 220.1634 51

ABC 220.1634 61

Sim. 2
 10 customers
 3 vehicles

HHO 269.8302 28

SA 293.9009 105

ABC 284.9794 65

Sim. 3
 14 customers
 4 vehicles

HHO 219.2101 51

SA 278.3779 230

ABC 276.2006 144

Sim. 4
 20 customers
 4 vehicles

HHO 297.457 63

SA 385.7173 264

ABC 334.7739 231

Sim. 5
 25 customers
 5 vehicles

HHO 251.976 172

SA 376.6583 248

ABC 330.3308 224

Sim. 6
 30 customers
 5 vehicles

HHO 316.1595 193

SA 419.6352 282

ABC 354.6163 206

Sim. 7
 40 customers
 6 vehicles

HHO 319.0379 157

SA 549.2129 294

ABC 375.9213 280

Sim. 8
 50 customers
 7 vehicles

HHO 298.1563 194

SA 626.9496 298

ABC 377.2894 292

Sim. 9
 60 customers
 7 vehicles

HHO 401.5839 156

SA 712.1566 300

ABC 416.0673 250

Sim. 10
 70 customers
 8 vehicles

HHO 423.0535 186

SA 694.4901 300

ABC 442.3711 300
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On the other hand, in sim.3 with 14 customers and four cars, HHO outperformed 
the other algorithms in terms of both the minimum objective function with 219.2101 
and the fastest convergence with 51 iterations. Again all algorithms satisfied the 
capacity constraints. Similarly, in sim.4 with 20 customers and four vehicles, HHO 
outperformed the other algorithms in terms of objective function and number of iter-
ations of 297.457 and 63, respectively. Likewise, in sim.5 and sim.6, HHO performed 
better than the other two methods achieving an objective function of 251.976 and 172 
iterations and 316.1595 and 193, respectively.

Furthermore, HHO was able to achieve the lowest objective function and number of 
iterations in sim.7, sim.8, sim.9 and sim.10. In sim.7, with 40 customers and six cars, 
it achieved an objective function of 319.0379 in 157 iterations. In sim.8 with 50 cus-
tomers and seven vehicles, it had an objective function of 298.1563 and convergence 
speed of 194 iterations. In sim.9 with 60 customers and seven vehicles, its objective 
function was 401.5839 and its number of iterations was 156.

Importantly, in sim.10 that had the highest level of complexity with 70 custom-
ers and eight vehicles, the lowest objective function was also achieved by HHO with 
423.0535. The proposed method also performed the best in terms of convergence 
speed with 186 iterations.

Furthermore, a T-test was performed to compare the effectiveness of the HHO 
technique. The provided methodologies are utilized to calculate the findings statis-
tics, which are based on the simulation’s minimum objective function. Table 4 shows 
the results of a T-test on p-values and minimum objective function by the HHO, SA, 
and ABC, along with a 95 percent confidence interval (alpha value = 0.05).

As shown in Table  4,the HHO is more efficient than the SA and ABC, where the 
total number of p-values used in all simulations is less than 0.0001.As well as, the 
HHO has the least standard deviation and standard error rate in all simulations 
expect simulation 5. These findings suggest that the HHO is effective in resolving 
VRP.

In sum, in all ten scenarios, all three methods, HHO, SA and ABC, were able to 
satisfy the capacity constraints. However, HHO was clearly superior to the other two 
methods in terms of the minimum objective function obtained and the minimum 
number of iterations required. This indicates that HHO has the ability to achieve a 
balance between local and global search to reach more accurate solutions in a fast 
time. Table 5 provides more details on the number of iterations required in each sim-
ulation to reach the optimal solution compared to the other two methods.

From Table 5, the strength of HHO in every simulation is readily apparent. The use 
of HHO is advantageous whether the size of the problem is minimal, moderate or 
large, as it is able to find an optimal solution in the least number of iterations as com-
pared to the other compared methods. Harris hawk optimization is not only able to 
find an optimal solution, it can do so quickly. This is due to its architecture, which 
achieves a better balance between exploration and exploitation, and it can transition 
smoothly between these two types of search. The number of iterations, i.e., conver-
gence speed, is an important factor in solving complex optimization problems such 
as the VRP in a timely and cost-effective manner. Hence these results show that HHO 
has great potential for solving the VRP.
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Conclusion
The VRP is an NP hard real-world problem, which many researches are still trying to 
provide the best solutions to solve it. In this paper, we proposed a model using HHO 
algorithm to solve the VRP. The performance of HHO was assessed according to three 
criteria: the minimum objective function obtained, the minimum number of iterations 
required, and the satisfaction of capacity constraints. Compared with two well-known 
methods, namely, SA and ABC, the results showed that HHO was clearly superior in 
terms of both the minimum objective function obtained and the minimum number of 
iterations required. This is likely due to the advanced exploitative capabilities of HHO 
as well as its ability to achieve better integration between the local and global search 
processes.

On the other hand, HHO like other metaheuristic algorithms, cannot prove optimal-
ity and it cannot probably reduce the search space, as well as it is hard to guarantee the 
consistency of optimization outcomes acquired with the same initial condition settings. 
In the future, to achieve better results, HHO could be employed in a hybrid model with 

Table 4 T-test results for HHO, SA and ABC

Scenario Method Mean Std. deviation Std. error mean P_value

1 8 customers
3 vehicles

HHO 220.1634 1.229605574158 0.549896329865 0.00

SA 220.1634 2.011608776079 0.899618793489 0.00

ABC 220.1634 2.578602309004 1.153186009974 0.00

2 10 customers
3 vehicles

HHO 269.8302 0.836660026534 0.374165738677 0.00

SA 293.9009 3.209361307176 1.435270009441 0.00

ABC 284.9794 2.683281573000 1.200000000000 0.00

3 14 customers
4 vehicles

HHO 219.2101 0.547722557505 0.244948974278 0.00

SA 278.3779 3.807886552932 1.702938636593 0.00

ABC 276.2006 3.633180424917 1.624807680927 0.00

4 20 customers
4 vehicles

HHO 297.457 0.894427190999 0.400000000000 0.00

SA 385.7173 4.438468204234 1.984943324128 0.00

ABC 334.7739 6.188699378706 2.76767050062 0.00

5 25 customers
5 vehicles

HHO 251.976 5.630275304104 2.517935662403 0.00

SA 376.6583 5.549774770205 2.481934729198 0.00

ABC 330.3308 3.114482300479 1.392838827718 0.00

6 30 customers 5 vehicles HHO 316.1595 0.547722557505 0.244948974278 0.00

SA 419.6352 7.155417527999 3.200000000000 0.00

ABC 354.6163 6.496152707565 2.905167809267 0.00

7 40 customers
6 vehicles

HHO 319.0379 2.607680962081 1.166190378969 0.00

SA 549.2129 7.463243262818 3.337663853656 0.00

ABC 375.9213 3.563705936241 1.593737745051 0.00

8 50 customers
7 vehicles

HHO 298.1563 1.949358868962 0.871779788708 0.00

SA 626.9496 4.669047011972 2.088061301782 0.00

ABC 377.2894 4.658325879541 2.083266665600 0.00

9 60 customers
7 vehicles

HHO 401.5839 0.894427190999 0.400000000000 0.00

SA 712.1566 1.483239697419 0.663324958071 0.00

ABC 416.0673 5.099019513593 2.280350850198 0.00

10 70 customers
8 vehicles

HHO 423.0535 1.303840481041 0.583095189484 0.00

SA 694.4901 4.207136793593 1.881488772223 0.00

ABC 442.3711 7.127411872482 3.187475490102 0.00
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another metaheuristic algorithm, or its global search mechanism could be modified 
through the use of several methods such as a crossover operator.
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Sim. 7
 40 customers
 6 vehicles

150 280 240

Sim. 8
 50 customers
 7 vehicles

145 280 260

Sim. 9
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