

Exploration of In-Memory Computing for Big Data Analytics

using Queuing Theory
Riktesh Srivastava

Skyline University College, Sharjah

+971 6 5441155

rsrivastava@skylineuniversity.ac.ae

ABSTRACT

Assigning suitable memory chunk for Big Data analysis is posing

serious problems for Business Analysts. There are plentiful

solutions that came along to solve the issue of memory

management. The noteworthy solutions to the problems included

JVM based and Container based solutions. However, both of these

solutions suffered from disk I/O bottleneck. To reduce disk, I/O

bottleneck, in-memory system was introduced, which supports

interactive data analytics. Present study conducts request time

processing for in-memory system using three types of queue

models- MG1, GM1 and GG1.

CCS Concepts

D.3.4 [Programming Languages]: Processors—Code generation,

compilers, memory management, optimization, run-time

environments.

D.4.2 [Operating Systems]: Storage Management—Garbage

collection, main memory.

Keywords

In-Memory Computing (IMC), M/M/1 Queue, M/G/1 Queue,

G/M/1 Queue, G/G/1 Queue.

1. INTRODUCTION
Moore’s Law is still going strong with microprocessors

development gets doubled every two years. Software developers

developed algorithms collecting data (structured from database +

unstructured from social media) for data analysis. The volume of

data has increased so large and colossal, that was termed ―big data‖

later. Analysts face the issue of analyzing ―big data‖, as it takes

time for server to repossess data from storage systems in cloud or

hosting provider. What industry follows is termed as ―distributed

architecture‖, which stores and process ―big data‖ in two steps-

first locating the required data blocks and then loading and

reading part. Data can be placed in diverse categories of memories,

cache memory, main memory, and secondary memory [1], as

mentioned in Figure 1.

These ―distributed architecture‖ algorithms use the concept of

amassing the data from secondary storage and process them by

provisionally storing them in main memory. The biggest problem

in these algorithm was lag between secondary and main memory

data shifting. This lag has forced companies to develop the

application code to maximize the use of main memory and

minimize the access to secondary storage [2]. Using IMC solves

another problem of memory usage, as it was found that enterprise

storage system uses only a small portion of available memory they

buy, as Microsoft found that 85% of the memory in there data

center is free all the time [2].

Tr
an

sa
ct

io
n

al
Ex

te
rn

al
U

ns
tr

u
ct

ur
ed

Data
Storage

Data
Integration

D
at

a
M

ar
t

D
at

a
M

ar
t

D
at

a
M

ar
t

D
at

a
M

ar
t

Query Raw
Values for
Processing

Figure 1: Traditional memory usage for “big data”

These ―distributed architecture‖ algorithms use the concept of

amassing the data from secondary storage and process them by

provisionally storing them in main memory. The biggest problem

in these algorithm was lag between secondary and main memory

data shifting. This lag has forced companies to develop the

application code to maximize the use of main memory and

minimize the access to secondary storage [2]. Using IMC solves

another problem of memory usage, as it was found that enterprise

storage system uses only a small portion of available memory they

buy, as Microsoft found that 85% of the memory in there data

center is free all the time [2]. It is due to this reason following

companies have started reconnoitering the usage of IMC

1) Facebook newsfeed uses IMC for data fetch [3]

2) Tagged.com, a social networking site, always retrieve

data from memory tier only [2]

3) SAP HANA only access the non-volatile memory [4]

4) Oracle has also started combining DRAM and flash

memories into ―memory tier‖ [5]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

HP3C 2018, March 15–17, 2018, Hong Kong, Hong Kong
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6337-2/18/03…$15.00

https://doi.org/10.1145/3195612.3195621

11

Collecting and reading data from secondary memory and main

memory is not an ideal approach for Big Data and other high

performance applications concerning limited I/O bandwidth [6]. It

is due to this reason In-Memory Computing (IMC) is used in Big

Data, wherein, entire data (both structured and unstructured) is

picked from secondary memory into cache memory, and the entire

speed can be increased to 10x, 20x or even 100x [7]. Furthermore,

study conducted by [8], [9], states that there are three key

problems while accessing data through secondary and main

memory, skills, integration and security. IMC resolves the three

glitches by placing the entire data to be processed into cache

memory. Skills are now vital to manage data sources only,

problem of integration and security does not even occur, as main

data sources still are in secondary memory. Also businesses

dealing in Big Data benefits from cost savings, simplicity and

efficient data processing and improved visibility through better

business decisions [10]. The architecture adopted for IMC is given

in Figure 2 below:

Tr
an

sa
ct

io
n

al
Ex

te
rn

al
U

ns
tr

u
ct

ur
ed

Data
Storage

Data
Integration

Query Final
Results

Figure 2: IMC for Big Data

The processing time of data processing is evaluated based on

architecture using queuing theory. Using queuing theory to store

and refer large data sets does not take large amount of memory

[11]. The rest of paper is divided as follows: Section 2 depicts the

concepts of IMC using Columnstore indexes for smaller datasets.

Section 3 extrapolates the outcomes for higher number of records

using Gauss Elimination and back substitution techniques. Section

4 computes the results. Section 5 provides conclusion.

2. IN-MEMORY COMPUTATION USING

COLUMNSTORE INDEXES
For Big Data Analysis, the customary methodology is to extract

the data based on row based index. When the size of data includes

million rows and predictive analytics needs to be performed, row

based index fails. In this study, In-Memory Computation is

implemented using column based index, also called ―Columnstore

indexes‖.

Arrivals of random data sets in is λ and the rate at which the

processed data departs from is . Mathematically, both

arrivals and departures are function of time, as mentioned in

equations (1) and (2)

∑

 (1)

∑

 (2)

For estimation of probability of data sets to arrive at , three

assumptions are made:

1. At any given time and are number of data sets to

be processed.

2. There may be no requests at , depicting no

requests departs from .

3. Also, there may be only one large dataset at , thus,

there is only one response departs from .

Based on above mentioned assumptions:

 Probability of one arrival =

 Probability of one departure

 Also, probability of no arrival of dataset

 Thus, the probability of no departure from

IMC

For processing, if we increase the time from to , we get

 () {

 ()()()

 ()()

 ()()
 (3)

Arranging the conditions in equation (3), we get

 () ()()() ()
 () (4)

or,
 () ()

 () () () ()

 (5)

But,

{
 () ()

}

* () +

Thus, the R.H.S. of equation (5) becomes

 () () () () (6)

To solve equation (6), it is assumed that there were 0 requests at

time . This can be obtained from the states as given under:

Thus, L.H.S. of equation (7) becomes

 {
 () ()

} (7)

* () + (8)

Hence equation (8) becomes

 () (

) () (9)

From equations (6) and (8), the following can be derived as:

 () (

)

 ()

 () (

)

 ()

 () (

)

 ()

:

:

 () (

)

 () (10)

Summation of all the equations:

∑ () {(

)

 (

)

 (

)

 (

)

} ()

(11)

Based on limiting condition, when and

 , L.H.S.

becomes 1 and R.H.S. becomes

12

[

(

)
] ()

Thus equation (10) becomes

 [

(

)
] () (12)

Substituting equation (12) in equation (11), we get

 () (

)

(

) (13)

From equation (13), the probability of data at any

given time is evaluated.

In order to calculate the estimated size of in-memory for a

given data set so that no data is left out is given as:

 () ∑
 () ∑ (

)

(

)

 (14)

From equation (13), the average memory size for can

be

evaluated as mentioned in equation (15) as:

 ()
(⁄)

(
 ⁄)

 (15)

 Flowchart given in Figure 3 expands the broad

implementation process.

Data Extraction for
ColumnStore
Indexes A[i]

λ =5000, 7500, 10000,12500,15000

Data Retrieval after
analysis R[i]

µ =5001, 7501, 10001,12501,15001

i=1

Q(i)=[A(j)<D(j)] – [i-1]

SUM=0

SUM=SUM+Q(i)

i=i+1

IS i=N?

Q(Av) = SUM/N

No

Yes

Figure. 3. Columnstore execution via Markovian Distribution

2.1 Results for smaller datasets (using

Markovian Distribution)
The computational results using the equation (15) are given in

table 1.

Table 1: Computation results

 µ MM1 MG1 GM1 GG1

5000 5001 5000 5102 5098 5538

7500 7501 7500 7653 7647 8400

10000 10001 10000 10204 10194 11190

12500 12501 12500 12755 12740 14126

15000 15001 15000 15306 15283 17695

Notice that the memory size is calculated for lower magnitude of

data sets. Also, the value of µ is evaluated as +1 (considering to

be worst case scenario for effective data management). To find

the memory size for higher values of data set, multinomial

regression technique is used, which extrapolates the average

 (). If we plot the values obtained for effective memory size

for all four queue models, we get the following as shown in

Figure 4:

Figure. 4. Graphical Representation

Close observation from Figure 4 gives MM1 queue as a linear

equation with slope of unity. However, other queue models [MG1,

GM1 and GG1] have curves.

These curves are smooth and assumed to be second order

polynomial. The equations of () for all the three models are

denoted as:

Notice are coefficients of polynomial for MG1,

 are coefficients of polynomial for GM1 and

 are coefficients of polynomial for GG1 queue model.

Let represents the error in computation and real values of

memory size, then is represented as

 ∑(
)

 for MG1 model

 ∑(
)

 for GM1 model

 ∑(
)

 for GG1 model

2.2 Mathematical Assessment of General

Distribution
For general distribution, two types of distribution [12] (Bernoulli

and Gaussian distribution) are used () is evaluated as

average of these two distributions.

2.2.1 Bernoulli Distribution

Bernoulli Distribution equation can be given as:

 (()) ()

Equiprobable Distribution ()

Bernoulli Distribution ()

then,

0

20000

40000

60000

80000

D
A

TA
 S

ET
 S

IZ
E

M/M/1 Queue M/G/1 Queue

G/M/1 Queue G/G/1 Queue

13

 () √
 ()

 (16)

where,

 for arrival of data sets

 for departure

2.2.2 Geometric Distribution
Geometric Distribution equation can be given as:

 (())

(())

Equiprobable Distribution ()
Geometric Distribution ()

then,

 ()

 (())
 (17)

where,

, and

 for both arrival and departure

From equation (16) and (17), () is given as

 () = 𝐴𝑣𝑔 ± 2 +
2 ()

 + (

1

 (1 ())
)

 (18)

Figure 5 given below mentions the step wise evaluation for

General distribution arrival and distribution.

Read n,λ,µ,b,a

Generate N/2

Equiprobable

Y[EQP]

[Bernoulli]
[Geometric]

Merge y(i)BD and
y(i)GD

Prepare String A(i),
iꞒ (1,N)

Ar(i) = 0

Ar(i) = Ar(i) + A(i)

PRINT Ar(i)

i=i+1

Distribution types

is i=N?

[No]

SUM Ar(N)

[Yes]

Figure 5. General Distribution Evaluation

EXTRAPOLATION OF RESULTS

In order to extrapolate the results for higher order Columnstore

index, we need to look into curves from Figure 4. It is observed

that these curves are smooth and assumed to be second order

polynomial. The equations of () for all the three models are

denoted as:

Notice are coefficients of polynomial for MG1,

 are coefficients of polynomial for GM1 and

 are coefficients of polynomial for GG1 queue model.

Let represents the error in computation and real values of

memory size, then is represented as

 ∑(
)

 for MG1 model

 ∑(
)

 for GM1 model

 ∑(
)

 for GG1 model

Differentiating S w.r.t and setting each of these

coefficients to 0, we get following equations for MG1 queue.

 ∑ ∑
 ∑

 ∑ ∑
 ∑

 ∑

 ∑
 ∑

 ∑
 ∑

Similarly, we get the following equations for coefficients for GM1

queue

 ∑ ∑
 ∑

 ∑ ∑
 ∑

 ∑

 ∑
 ∑

 ∑
 ∑

And, coefficients for GG1 queue,

 ∑ ∑
 ∑

 ∑ ∑
 ∑

 ∑

 ∑
 ∑

 ∑
 ∑

For the size of data set as mentioned in Table 1, we can compute

the equations to find the value of coefficients. The results of

computation are depicted in Table 2 below:

Table 2: Computation of results
COMPUTATION

RESULTS

PARAMETERS

MG1 GM1 GG1

∑
50000 50000 50000

∑
50962 51020 56949

∑

562500000 562500000 562500000

∑

6875000000000 6875000000000 6875000000000

∑

8882812500000

000

8882812500000

000

8882812500000

000

∑
573277500 573975000 644590000

∑

7006293750000 7015250000000 7918512500000

2.3 Normal Equations
By taking the values as computed and observed from Table 2, the

normal equations and values of coefficients for MG1, GM1 and

GG1 Queues can be easily computed.

14

2.3.1 Normal equations for MG1 queue

Substituting the values from Table 2, we get the following

equations for MG queue

By Gaussian elimination and using back substitution, we obtain:

 , ,

2.3.2 Normal equations for GM1 queue

Placing the values from Table 2, we get the following equations

for GM1 queue

By Gaussian elimination and using back substitution, we obtain:

 , ,

2.3.3 Normal equations for GG1 queue

Placing the values from Table 2, we get the following equations

for GG1 queue

Using Gaussian elimination and using back substitution, we

obtain:

 ,

3. CALCULATION OF IN-MEMORY SIZE
The algorithm is executed with arrival rates in range of 5000 to

15000 for MG1, GM1 and GG1 models. The curve equations of

the model which passes through the points of rate of arrival and

 ()are determined for these models. The equations have been

considered polynomial of second order. The first order

polynomial fits in MM1 model only. The second order polynomial

usually be part of parabola. The regression technique to determine

the coefficients of polynomials of second order are calculated.

These equations are used to analytically calculate the size of

memory at any high rate of the model. The model which offers

largest Queue Length is used to decide the memory size for Big

Data Analysis. Memory size is decided as sum of Average value

and its Standard deviation. The entire work is summarized in this

section.

Based on calculation of coefficients for three types of queues, the

average ()are denoted as:

 ()

 ()

 ()

In all the equations, () is in-memory size and is value as

derived in equations (15) and (18) respectively.

From the study, it was observed that optimal value of in-memory

 () () ()

In case of Markovian arrival, () is given as

 () ()

Thus, the optimal value of () is

 () ()

The calculated in-memory size is depicted in Table 3 below:

Table 2: in-Memory Size (in MB)
Data Set

Size

Optimal in-Memory Size (in MB)

MG1 GM1 GG1

 356020000 397572686 3582614771

 33800200000 37918583986 356740425714

 3362002000000 3773471554257 35658832057142

 336020020000000 377163286828571 3565731100571420

4. CONCLUSION
The problem of deciding the size of memory for Big Data

Analysis is extremely complex, especially, when attempted using

row level indexing. This was the reason of selecting Columnstore

indexing for evaluation of results. Presence of NA’s and different

format of data makes the study even more complex and model

was studied using random Columnstore size. This was the reason

of selecting queue models to decide the size of memory and

functioning of Big Data Analysis using Columnstore indexes.

There are two possibilities:

 Either dataset have some distribution.

 or, Dataset doesn’t have any discipline for the distribution.

The present study has been carried out for both disciplines and

indiscipline’s. Disciplined data arrival or departure has been

studied under MM1. Analytical and Stimulation study are possible

to decide the memory size for processing. This study for the same

is carried out and observed that general distribution is not possible

to be studied analytically, due to presence of large degree of

freedom of distribution. Hence, this has been studied combining 2

distributions and giving the name, general distributions. These

distributions were merged and applied to three queue models,

MG1, GG1 and GG1.

The processing and departure of results from dataset, termed as

departure rate, µ. Columnstore data extraction and processing

were targeted at µ> , which makes the entire data analysis

extremely stable. This state is also termed as ―Ergodic functioning

for Big Data Analysis‖. At any time, if it is observed, that

extraction rate is greater than the processing and departing rate,

the processing was stopped were stopped and restarted (though

this situation happened only twice).

For the given experiment, MG1 model provided the best results as

given in Table 3. MG1 memory required the least memory size for

the same amount of data to be processed. GG1 model used similar

amount of memory for less number of data, but the performance

decreases for large datasets. The experiment will be further

conducted for real-time dataset environment as an extension to the

result.

15

5. REFERENCES

[1] T. Raynaud, R. Haque, and H. Aít-kaci, ―CedCom: A High-

Performance Architecture for Big Data applications,‖ 2014

IEEEACS 11th Int. Conf. Comput. Syst. Appl. AICCSA.

[2] E. Savitz, ―IT Revolution: How In Memory Computing

Changes Everything,‖ Forbes. [Online]. Available:

https://www.forbes.com/sites/ciocentral/2013/03/08/it-

revolution-how-in-memory-computing-changes-everything/.

[Accessed: 10-01-2018].

[3] B. J. Says, ―The Myth Of In-Memory Computing,‖ The

Next Platform, 19-Feb-2016. [Online]. Available:

https://www.nextplatform.com/2016/02/19/the-myth-of-in-

memory-computing/. [Accessed: 21-Jan-2018].

[4] Mihnea Andrei et.al, "SAP HANA Adoption of Non-

Volatile Memory", The Proceedings of the VLDB

Endowment (PVLDB) pp: 1754 [Access on 19-01-2018]

[5] Oracle Report, ―New Oracle Exadata X7 Delivers In-

Memory Performance from Shared Storage.‖ [Online].

Available:

https://www.oracle.com/corporate/pressrelease/oow17-

oracle-exadata-x7-100217.html. [Accessed: 12-12-2017].

[6] B. Roussey, ―How in-memory computing helps enterprises

overcome Big Data woes,‖ How in-memory computing

helps enterprises overcome big data woes, 05-May-2017.

[Online]. Available: http://techgenix.com/in-memory-

computing/. [Accessed: 29-Dec-2017].

[7] D. Gutierrez, ―insideBIGDATA Guide to In-Memory

Computing,‖ insideBIGDATA, 25-Sep-2014. .

[8] P. Jeffcock, ―3 Key Problems To Solve If You Want A Big

Data Management System,‖ 2014. [Online]. Available:

https://blogs.oracle.com/bigdata/3-key-problems-to-solve-if-

you-want-a-big-data-management-system. [Accessed: 09-

Dec-2017].

[9] N. Khan et al., ―Big Data: Survey, Technologies,

Opportunities, and Challenges,‖ Sci. World J., vol. 2014,

2014.

[10] SAP AG Report, Harnessing the Power of Big Data in Real

Time through In-Memory Technology and Analytics, The

Global Information Technology Report 2012, World

Economic Forum, 2012, pp:88-96, [Accessed on 10-12-

2017]

[11] ―Memory Management for Large Data Sets - LabVIEW

2017 Help - National Instruments,‖ Memory Management

for Large Data Sets, 01-Mar-2017. [Online]. Available:

http://zone.ni.com/reference/en-XX/help/371361P-

01/lvconcepts/memory_management_for_large_data_sets/.

[Accessed: 29-Dec-2017].

[12] R. Srivastava, ―Estimation of Buffer Size of Internet

Gateway Server via G/M/1 Queuing Model,‖ Int. J. Comput.

Inf. Eng., vol. 1, no. 9, pp. 2667–2675, 2007.

16

