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 

Abstract—IoT enabled armed reconnaissance drones in swarms 

can conduct reconnaissance over large areas and launch 

coordinated attacks on valuable targets, which could be 

particularly useful in amphibious landing missions. Motivated by 

the rapid advance of the wireless backhaul technologies, in this 

work we demonstrate that the UAVs can share messages and 

perform cooperative beam forming for more efficient interference 

mitigation—a technique called Coordinate Multi-Point (CoMP) in 

the sky. The initial deployment of UAVs from the ground and the 

re-deployment of UAVs once an area is searched are also 

investigated for trade-offs to reduce energy costs and search time. 

Three strategies are compared that are scalable and decentralized, 

and require low computational and communication resources. 

Once finishing the frequency allocation, we maximize the 

minimum distance among subspaces spanned by codebook 

matrices obtained in Grassmannian subspace packing scheduling 

for the small unit of drone swarm. We expose our result for 

throughput–delay trade-off over a single-UAV-enabled network 

with GUs’ nominal locations and the UAV trajectories. The 

robustness of  trade-offs is shown for the maximum transmit 

power and the receiver noise power  as 20 dBm (0.1 W) and −110 

dBm, respectively, while the channel power gain at the reference 

distance of 1 m is set as −50 dB.  We observed that the optimized 

UAV trajectories are tend not only to shorten the communication 

distances between the UAVs and their associated GUs, but also to 

enlarge the separations of the two UAVs to help alleviate the co-

channel interference, in the case without power control. Our 

outcomes encourage to solve the multi-UAV mobility prediction in 

a large-scale system state prediction such as Directional Airborne 

Network (DAN). It is observed that the UAV flies close to the two 

GUs by following a smooth trajectory with relatively large turning 

radii when Emax = 13 kJ; whereas when Emax is increased to 23 kJ, 

the UAV’s trajectory tends to approach that without the 

propulsion energy constraints. Capable of deployment from the 

ground, sea and air, proposed methodology of Synthetic 

Interference Matrix (SIM) could play a vital role in challenging 

missions including simultaneous and coordinated operation of a 

large number of drones that could prove to be very difficult to 

defend against.  

 
Index Terms—Drone Swarm, Coperative Network, 5G, 

Amphibious Landing, Grassmannian Subspace  

 

I. INTRODUCTION 

nmanned aerial vehicle (UAV) networks need an efficient 

routing scheme to form any swarming shape. Such a 

routing scheme exchanges the node profile information 
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[moving speeds, locations, quality-of-service (QoS) 

requirements, etc.] among UAVs to speed up the swarming 

process. Hierarchical routing is a classic routing with the goal 

to manage large-scale UAV networks and decrease routing 

table size in each node. It first separates the nodes into different 

groups based on some type of criteria such as node proximity 

and task synchronizations [1]. The routing process will find the 

group IDs to traverse each time instead of going through each 

individual node.  

Internet routing was built in a hierarchical style. Figure 1.1 

shows the multilevel Internet structure. Users or customers are 

first separated into different areas [called Autonomous Systems 

(AS)] based on their physical locations or network link states. 

Several network areas are connected with an Internet backbone. 

Those areas form one AS to several ASes can share the same 

upper-level backbone, which are shown as bold lines in      

Figure 1.1. Specific routing protocols can operate in different 

ASes. In Figure 1.1, there are actually three route levels, i.e., 

intra-area, inter-area, and inter-AS. They are responsible for 

transferring packets within the same area, from an area to the 

backbone or between different ASes (via backbone), 

respectively.  

Here the skeleton is defined as the contour that reflects the 

approximate shape of the whole UAV swarm. From a geometry 

viewpoint, such a skeleton often represents the median axis of 

the entire shape. It is typically located in the core area of the 

network so it has the most stable routing topology. In other 

words, the nodes located in the skeleton do not move as much 

as the nodes in the marginal areas during the swarming process. 

A virtual backbone of the UAV network can be established by 

using the skeleton nodes, and a hierarchical routing topology 

can be formed.   

Figure 1.1 also shows a general ideal of a UAV network by 

utilizing hierarchical routing structure. In this figure, the first-

level routers (which are special UAVs located in the main 

skeleton sections) are located in the “trunk”. The second-level 

routers are located in the branches of the trunk. Other UAVs 

use the second-level routers to reach the first-level routers. The 

benefits for such a multilevel routing structure are 

straightforward: it is very easy to determine the communication 

routes by just searching the closest skeleton UAVs. 

 

Today, UAVs are of great interest in broad areas of applica-

tions, such as military reconnaissance, firefighter operation, 

police pursuit and so forth. The more and more advanced 
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instance, lowering the UAV’s flying altitude under the 

probabilistic LoS channel model generally decreases the 

probability of having LoS links with GUs, while it is always 

beneficial under the LoS model. As a result, a more complex 

3D trajectory optimization problem (as compared to the 2D 

design in our typical scenario under the LoS model) needs to be 

investigated. Moreover, although the presence of LoS links 

makes the UAVs well suitable for 5G technologies such as 

millimeter wave (mmWave) and massive multiple input–

multiple output (M-MIMO) communications, the severe air-to-

ground interference issue and 3D mobility-induced Doppler 

Effect deserve more investigations in the future.    
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