
Received June 24, 2021, accepted July 5, 2021, date of publication July 8, 2021, date of current version July 19, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3095559

Software Defect Prediction Using Ensemble
Learning: A Systematic Literature Review
FASEEHA MATLOOB 1, TAHER M. GHAZAL 2,3, (Member, IEEE), NASSER TALEB4,
SHABIB AFTAB 1,5, MUNIR AHMAD 5, (Member, IEEE), MUHAMMAD ADNAN KHAN 6,
SAGHEER ABBAS 5, AND TARIQ RAHIM SOOMRO 7, (Senior Member, IEEE)
1Department of Computer Science, Virtual University of Pakistan, Lahore 44000, Pakistan
2Center for Cyber Security, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
3School of Information Technology, Skyline University College, University City of Sharjah, Sharjah, United Arab Emirates
4Faculty of Management, Canadian University Dubai, Dubai, United Arab Emirates
5School of Computer Science, National College of Business Administration and Economics, Lahore 54660, Pakistan
6Pattern Recognition and Machine Learning Laboratory, Department of Software, Gachon University, Seongnam 13557, South Korea
7CCSIS, Institute of Business Management, Karachi, Sindh 75190, Pakistan

Corresponding authors: Muhammad Adnan Khan (adnan@gachon.ac.kr) and Munir Ahmad (munir@ncbae.edu.pk)

ABSTRACT Recent advances in the domain of software defect prediction (SDP) include the integration of
multiple classification techniques to create an ensemble or hybrid approach. This technique was introduced
to improve the prediction performance by overcoming the limitations of any single classification technique.
This research provides a systematic literature review on the use of the ensemble learning approach for
software defect prediction. The review is conducted after critically analyzing research papers published
since 2012 in four well-known online libraries: ACM, IEEE, Springer Link, and Science Direct. In this
study, five research questions covering the different aspects of research progress on the use of ensemble
learning for software defect prediction are addressed. To extract the answers to identified questions, 46 most
relevant papers are shortlisted after a thorough systematic research process. This study will provide compact
information regarding the latest trends and advances in ensemble learning for software defect prediction
and provide a baseline for future innovations and further reviews. Through our study, we discovered
that frequently employed ensemble methods by researchers are the random forest, boosting, and bagging.
Less frequently employed methods include stacking, voting and Extra Trees. Researchers proposed many
promising frameworks, such as EMKCA, SMOTE-Ensemble, MKEL, SDAEsTSE, TLEL, and LRCR, using
ensemble learning methods. The AUC, accuracy, F-measure, Recall, Precision, and MCC were mostly
utilized to measure the prediction performance of models. WEKA was widely adopted as a platform for
machine learning. Many researchers showed through empirical analysis that features selection, and data
sampling was necessary pre-processing steps that improve the performance of ensemble classifiers.

INDEX TERMS Systematic literature review (SLR), ensemble classifier, hybrid classifier, software defect
prediction.

I. INTRODUCTION
The ensemble learning model is built by combining the
multiple machine learning classifiers to improve prediction
performance [2]. According to the literature, many terms,
such as hybrid, combined, integrated, and aggregated clas-
sification, are employed for ensemble learning [20]–[23].
In the traditional method of defect prediction, an individual
classifier, such as the naïve Bayes classifier, decision trees,

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Liu .

or a multilayer perceptron, is used to build the predic-
tion model on a pre-labelled dataset. Individual classifiers
might have some weaknesses to predict a certain defect
under a specific circumstance [24], [25]. For this reason,
ensemble learning was applied so that the strengths of
multiple classifiers can be combined to provide better defect
discovery in the dataset. Many researchers have provided
empirical evidence in the last decade, which suggests that
ensemble methods provide better classification accuracy than
individual classifiers [26]–[30]. Broadly, ensemble methods
are classified into two groups based on the types of base

98754 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-8884-8484
https://orcid.org/0000-0003-0672-7924
https://orcid.org/0000-0002-7662-1394
https://orcid.org/0000-0002-5240-0984
https://orcid.org/0000-0003-4854-9935
https://orcid.org/0000-0001-5289-7831
https://orcid.org/0000-0002-7119-0644
https://orcid.org/0000-0001-7300-9215


F. Matloob et al.: Software Defect Prediction Using Ensemble Learning

learners: 1) homogeneous ensemble methods and 2) het-
erogeneous ensemble methods. In homogenous ensemble
methods, the same base learners are applied to a different
set of instances in a dataset. Examples include bagging,
boosting, rotation forest, etc [18]. In the heterogeneous
ensemble method, different base learners are generated
using different machine learning techniques. These base
learners are combined, and final prediction is performed by
integrating the results of base learners either statistically or by
voting [18]. Heterogeneous methods are more diverse than
homogeneous methods due to the different natures of base
learners. Ensemble methods can also be categorized as linear
and nonlinear. In linear ensemble methods, the output of base
learner models is combined using a linear function, such as
a weighted average or simple average, while in nonlinear
ensemble methods, a nonlinear technique, such as a decision
tree or support vector machine (SVM), is applied to combine
the decision of base learners [19]. Researchers also take into
account diversity while adding multiple classifiers into an
ensemble. Diversity of classifiers refers to the notion that
the chosen classifiers in an ensemble method make mistakes
about different instances of data. Different measures are
employed to evaluate the diversity between two classifiers,
such as the Correlation Diversity Measure, Q-Statistics,
Precision, and Weighted Accuracy & Diversity (WAD).
Apart from advancements in ensemble learning techniques,
many more promising SDP approaches are being proposed.
These approaches aim to predict defects much earlier in
the software development lifecycle using the concepts of
code smells and requirements smells. Hennning et al. [75]
proposed a lightweight static requirements analysis approach
named Smella that allowed for immediate rapid checks when
requirements were written down.

This paper provides a review to reflect the recent research
conducted on the use of ensemble learning techniques for
software defect prediction. The latest papers published since
2012 are considered for this study. Four renowned and
widely employed online search libraries are selected for the
extraction of relevant literature, such as ACM, IEEE, Science
Direct, and Springer Link. Initially, 3715 papers are extracted,
and then 30 most relevant papers are selected as Primary
Studies (PS) after following a thorough systematic research
process. The remainder of the paper is organized as follows:
Section 2 presents the research protocol. Section 3 presents
the findings of this review. Finally, section 4 concludes the
paper with suggestions for future work.

II. RESEARCH PROTOCOL
A systematic literature review (SLR) is a well-defined sys-
tematic process to analyze multiple studies and answer pre-
defined research questions. SLR starts by defining a research
protocol that involves the identification of well-defined
research questions to be addressed. The process explicitly
defines the search strategy and inclusion & exclusion criteria
for the selection of relevant studies and guides the extraction
of information from each primary study (PS) [33]. The SLR

TABLE 1. Data sources and query results.

process is divided into three phases: planning the review,
conducting the review, and reporting the review. Each phase
consists of sub-phases, as explained in Fig 1. The systematic
research process followed in this paper is based on the
guidelines provided by [34]–[39].

A. PHASE 1: PLANNING THE REVIEW
The first phase of an SLR provides the initial guidelines to
select the relevant studies by defining the following aspects:
research questions, data sources, search string, inclusion
criteria, exclusion criteria, and quality criteria.

1) RESEARCH QUESTIONS
The purpose of this study is to identify, analyze and
summarize the empirical shreds of evidence regarding the
use of ensemble learning techniques for software defect
prediction by focusing on evaluation criteria, simulation
tools, and datasets. These objectives are reflected in the form
of research questions, and obtaining the answers to these
questions via a critical review is the ultimate goal of an SLR.
The research questions identified for this research are given
as follows:
RQ1: Which ensemble learning techniques are applied for

software defect prediction?
RQ2: Which evaluation criterion is utilized to measure the

performance of ensemble learning techniques?
RQ3: What are the most commonly employed tools to

implement ensemble learning techniques?
RQ4: Which datasets are used to analyze the performance of

ensemble learning techniques?
RQ5: With which technique (s) is the proposed ensemble

method compared?

2) DATA SOURCES
Data sources refer to the search space or libraries from where
the research studies should be extracted. In this paper, ‘ACM
digital library’, ‘IEEE Xplore’, ‘Springer link’ and ‘Science
Direct’ are selected to extract the Primary Studies. The search
is performed on a full text of papers. Each electronic database
has different options to search for the relevant material. For
this reason, the search string is modified to meet the specific
requirements of data sources to obtain the most relevant
literature. Table 1 shows selected data sources and the number
of results generated by search queries.

3) SEARCH STRING
To formulate the search string, particular keywords and their
synonyms are selected from the identified research questions,

VOLUME 9, 2021 98755



F. Matloob et al.: Software Defect Prediction Using Ensemble Learning

FIGURE 1. SLR process.

TABLE 2. Search string.

as shown in Table 2. The keywords are then arranged with
the conditions of ‘AND’ and ‘OR’ in a particular sequence to
form the following query:
((‘‘software’’ OR ‘‘program’’OR ‘‘system’’) AND (‘‘defect’’

OR ‘‘error’’ OR ‘‘fault’’ OR ‘‘bug’’) AND (prediction’’
OR ‘‘estimation’’ OR ‘‘classification’’) AND (ensemble OR
integrated OR hybrid) AND (learning OR machine learning
algorithm OR algorithm OR classifier OR technique OR
method OR model))

4) INCLUSION CRITERIA
Studies published in English from 2012 to 2021 are selected
for review. The focus is to select studies that have discussed
ensemble classifiers for the prediction of software defects.
Empirical studies that include experiments on any particular
dataset are selected to solve the classification problem of
software defects with an ensemble learning approach and a

performance evaluation. Studies that present a comparison of
ensemble techniques with other techniques are also selected.
Preference is given to the latest studies. The selected articles
can only belong to journals, conferences, or books.

5) EXCLUSION CRITERIA
Studies that were published before 2012 are excluded.
An article whose main focus is not ensemble classifiers
or was not written about software defect prediction (SDP)
is excluded. Papers that did not include the results of an
empirical analysis or did not evaluate the performance of the
applied ensemble technique are also excluded.

6) QUALITY CRITERIA
The purpose of establishing the quality criterion is to ensure
that selected Primary Studies provide enough details to
answer the identified research question. We refer to each
quality criterion as ‘QA’ followed by their number. The QA
and data extraction processes are carried out concurrently.
A QA checklist to evaluate the eminence of selected primary
studies is shown in Table 3.

B. PHASE 2: CONDUCTING THE REVIEW
1) PRIMARY STUDIES SELECTION
Primary Studies are known as the most appropriate articles
selected by following the tollgate approach [32] to answer the
identified questions. The tollgate approach, which consists of

98756 VOLUME 9, 2021



F. Matloob et al.: Software Defect Prediction Using Ensemble Learning

TABLE 3. QA criteria for the primary study.

TABLE 4. Tollgate approach.

five phases P-1 to P-5, facilitates the selection of 46 Primary
Studies [1]–[12], [40]–[60], [62]–[74], as shown in Table 4.
The mentioned quality criteria (Table 3) are followed during
the selection of each primary study. The filters of the tollgate
phases are given as follows:

Phase 1 (P-1): Initially extracted data by using various
combinations of keywords from a search query.

Phase 2 (P-2): Removed duplicates and applied inclu-
sion/exclusion criteria by reading the title.

Phase 3 (P-3): Applied inclusion/exclusion criteria by
reading the abstract.

Phase 4 (P-4): Applied inclusion/exclusion criteria by
reading the introduction and conclusion.

Phase 5 (P-5): Applied inclusion/exclusion criteria by
reading the full text of selected studies. These articles are
considered primary studies.

2) DATA EXTRACTION
The extracted data from each primary study includes the
following details: proposed/used ensemble learning tech-
nique, criteria of performance evaluation, a tool that is
used for the implementation of ensemble learning, datasets
utilized for the experiments, and the techniques with which
proposed/used ensemble learningmethods are compared. The
selected 46 primary studies are provided in Table 5. Nineteen
journal articles, and 21 studies are part of the conference
proceedings. Fig 2 shows the distribution of studies over the
years.

3) DATA SYNTHESIS
This stage includes the fusion of relevant extracted data, how
much data are needed to address each question and how to
compile and present the data.

FIGURE 2. Distribution of primary studies over the years.

C. PHASE 3: REPORTING THE REVIEW
1) QUALITY ASSESSMENT
Each selected primary study is assessed against QA criteria
(table 3) and assigned a score between 0 and 1, as shown
in Table 6. This process of quality assessment is adopted by
many researchers in SLRs [76], [77]. If the article explicitly
answers the QA question, the study is given a score of 1, and
if it partially answers the question, the study is given a score
of 0.5. A score of 0 is assigned to studies that fail to answer
QA questions. The final score is calculated by summing the
scores for all QA questions.

After assessing the quality of selected primary studies, it is
found that the score of each primary study ≥70% against
QA criteria. This finding means that selected primary studies
provide adequate information about ensemble learners.

2) RESULTS
The last stage of the systematic research process evaluates the
answers to identified research questions after a critical review.
The detailed extracted answers from each primary study are
discussed in the next section.

III. FINDINGS
This section answers the research questions mentioned in
section 1.
RQ1: Which ensemble learning techniques are applied for

software defect prediction?
Fig 3 shows the distribution of primary studies in

each year according to the type of study. Some studies
proposed newmethods based on ensemble learning to predict
the defects in software, whereas other studies compared
the performance of existing techniques to identify better
performing techniques. Table 7 summarizes the techniques
discussed in selected primary studies. In [53], researchers
proposed a multiclass learning method to address imbalanced
datasets. First, they converted imbalanced binary class data
into balanced multiclass data. Second, some coding-based
methods were employed to convert multiclass data into
diverse binary data. Last, classification was applied to predict
defects. Three coding schemes, six data sampling methods,
and four classification algorithms were compared through

VOLUME 9, 2021 98757



F. Matloob et al.: Software Defect Prediction Using Ensemble Learning

TABLE 5. List of selected primary studies using SLR.

experiments. The results showed that one coding scheme
outperformed conventional methods. Moreover, the random
forest (RF) performed better than decision trees, Ripper and
naïve Bayes (NB). In [54], researchers investigated the impact
of different class imbalance methods, including resampling
methods, threshold moving, and ensemble learning. Through

experiments, it was shown that AdaBoost.NC performed
best compared to other methods. Researchers also presented
a dynamic version of AdaBoost.NC that was able to
automatically adjust its parameters during training. In [49],
researchers built a software EnsembleSVM that provided
ensembles of instance-weighted SVMs. Their framework

98758 VOLUME 9, 2021



F. Matloob et al.: Software Defect Prediction Using Ensemble Learning

TABLE 6. Quality assessment for primary studies selection.

aimed to reduce the complexity of large-scale nonlinear
learning and speed up prototyping of ensemble classifiers.
EnsembleSVM was compared to LIBSVM 3.17. Although
there was no significant difference in the performance
accuracy of the two libraries, EnsembleSVM trained the
model faster than LIBSVM. In [50], AdaboostM1, Vote,
and StackingC were compared with themselves and base
classifiers. NB, Logistic, J48, voted perceptron, and SMO
were utilized as base classifiers. The results showed that
ensemble models outperformed base classifiers. Among the
ensemble models tested, StackingC performed better than
others.

In [40], researchers analyzed the effect of feature selection
(FS) combined with ensemble learning on the performance
of defect prediction. They proposed an average probability
ensemble (APE) approach for defect classification. Greedy
forward selection (GFS) and correlation-based FS were used
to select features in the pre-processing step. Seven base
classifiers were employed to form the APE model: RF,
gradient boosting, stochastic gradient descent, W-SVMs,
logistic regression, multinomial NB, and Bernoulli naive
Bayes. The model, evaluated on six datasets, showed that
GFS outperformed correlation-based FS, and the APE model
achieved the highest AUC compared with W-SVMs and RF.
They also proposed an enhanced version of APE, combined
with GFS, which further achieved a higher AUC measure.
In [41], researchers proposed an evolutionary algorithm based
on the general PBIL algorithm to automatically select the
best ensemble method and its parameters. This method
was referred to as PBIL-Auto-Ens. They compared the
proposed method with Auto-Weka and found that the PBIL-
Auto-Ens error rate was 11% smaller than Auto-Weka.
In [42], different oversampling methods were used to build
an ensemble classifier to overcome the effect of minority
class data. Three oversampling methods—ROS, MWM, and
FIDos—were selected to form an ensemble. Using RF as a
base learner and 5-fold cross-validation in the experiments,
the results showed that the proposed method achieved a
significantly lower false-positive rate compared to individual
oversampling techniques. In [58], researchers examined
17 ensembles built using 18 feature ranking techniques.
The applied feature ranking techniques include 6 filter-based

TABLE 7. Summary of techniques discussed in primary studies.

feature ranking techniques, the signal-to-noise filter tech-
nique, and 11 threshold-based feature ranking techniques.

VOLUME 9, 2021 98759



F. Matloob et al.: Software Defect Prediction Using Ensemble Learning

TABLE 7. (Continued.) Summary of techniques discussed in primary
studies.

The results showed that no single ensemble method out-
performed others in all datasets. However, the researchers
observed that the ensembles of a few ranking techniques
performed better than the ensembles of many ranking
techniques. In [59], a review of state-of-the-art ensemble

techniques for class imbalance problems was conducted.
The researchers provided a taxonomy of class balancing
techniques based on base ensemble learning algorithms and
how they address class imbalance problems. They concluded
that ensemble-based methods showed significantly improved
results. Moreover, RUSBoost or UnderBagging achieved
higher performances. They also showed that sampling
techniques worked better with the bagging ensemble learning
algorithm. In [43], researchers performed bagging with an
SVM on class-level and package-level metrics. The proposed
model was compared with the baseline SVM classifier.
The results suggested that the bagged SVM achieved better
ROC values compared to the SVM. In [44], researchers
proposed a clustering ensemble using PSO for defect
classification. Three clustering algorithms—K-means, PSO,
and Expectation maximization—were employed. K-means
and PSO were utilized with two similarity measures viz.
Euclidean and Manhattan similarity function. The PSO
algorithm outperformed other algorithms when acting as
a consensus function and clustering, in terms of average
accuracy.

In [60], researchers proposed ELBlocker to identify block-
ing bugs. They divided a training dataset into equal-sized
disjoint sets and then built classifiers on each disjoint set.
Using a random forest, these classifiers were combined
to compute the likelihood score for bugs to be block-
ing bugs. In [62], researchers proposed ‘‘CSForest’’: an
ensemble of decision trees and CSVoting to minimize the
classification cost. Further, they incorporated SMOTE and
Safe-level-Smote in CSForest to solve the class imbalance
problem. In [2], a hybrid phase-based ensemble model was
proposed to predict metric relationships and defects on
multiple associated products. The model involves three steps.
In the first step, an integrated SDLC phase-based dataset from
multiple projects was generated. In the second step, missing
values were filtered using a phase-based preprocessing algo-
rithm. The third step involved identifying relevant patterns
using phase clustering and a classification algorithm. Patterns
were extracted using hybrid decision tree construction. The
proposed model outperformed base classifiers, such as ANN,
SVM, NB, and RF. In [45], researchers compared the
performance of two feature selection methods (individual
and repetitively sampled feature selection) and ensemble
classifier (RUSBoost). An MLP and SVM were employed in
boosting and regular learning processes. The results showed
that repetitively sampled feature selection achieved better
performance with a plain learner in the learning process and
that boosting resulted in better classification performance
than without boosting. In [46], three ensemble methods—
bagging, boosting, and RF—were compared. Fifteen base
classifiers were utilized in ensembles. Experiments were
performed on nine open-source datasets from the PROMISE
repository. The results showed that AUC performance gain
for bagging, boosting, and RF was achieved on 10, 6, and
12 base learners. RF outperformed bagging and boosting
with no AUC performance loss. NB, logistic regression,

98760 VOLUME 9, 2021



F. Matloob et al.: Software Defect Prediction Using Ensemble Learning

and voted feature interval learners were not recommended
as base learners for bagging, boosting, and RF. In [47],
multi-objective optimization for ensemble classification was
proposed. A multi-objective genetic algorithm was employed
to choose base learners from a pool of 900 classifiers.
Two objectives were diversity and prediction error. The
researchers stated that while some classifiers, such as
ANN and KNN, were more commonly selected than other
classifiers, the results still depend on the type of dataset
applied. Moreover, a very small number of classifiers
were selected for the final ensemble from a large pool
of 900 classifiers.

In [48], researchers proposed an Ensemble Multiple
Kernel Correlation Alignment (EMKCA)-based approach
for heterogeneous defect prediction. First, source and target
project data were mapped into a high-dimensional kernel
space using multiple kernel classifiers. Second, they used the
kernel correlation alignment method to similarly distribute
the source and target project’s data. Last, kernel classifiers
were integrated with ensemble learning to remove the
impact of class imbalance. The EMKCA was compared with
benchmark methods on 30 datasets; it outperformed in the
majority of the cases. The researchers also analyzed the effect
of ensemble learning by calling a version of EMKCAwithout
ensemble KCA. The results showed that ensemble classi-
fiers generally outperformed each sub-classifier. In [63],
researchers compared the bagging, boosting, and stacking
ensembles. Eleven base classifiers, including NB, Bayes net,
SMO, PART, J48, RF, RandomTree, IB1, Decision Table, and
an NB tree in each of the three ensembles. Their experimental
analysis showed that boosting performed better than bagging.
The researchers also concluded that an RF was an important
algorithm in stacking and that it should be stacked with other
classifiers to improve performance. In [64], an RF (ensemble
of trees that vote for the class) was combined with feature
selection and data sampling. They compared bat search,
genetic search, and ant search algorithms in the feature
selection step. For class balancing, instance resampling
with replacement was utilized. In the classification step,
a Fuzzy Unordered Rule Induction Algorithm (FURIA),
MLP, NB, KStar, and RF algorithm were employed. All
three FS methods showed improved performance with the
RF compared with other classifiers, whereas bat search
showed better total performance on the datasets. In [65],
researchers analyzed the prediction uncertainty using four
classifiers: RF, NB, RPart, and SVM. They aimed to analyze
whether different classifiers identify the same defects. The
results showed that the four algorithms were comparable
in predictive performance. However, the subset of defects
identified by each classifier was different. Some classifiers
were consistent, while others vary in their prediction in
multiple runs. Based on these results, researchers strongly
suggested the use of ensemble classifiers. In [51], a hybrid
SMOTE-Ensemble approach was presented. In this method,
different ensembles were applied to a classification task. For
this purpose, bagging, RF, and AdaBoost were selected. J48

was employed as a base classifier for bagging and Adaboost.
In the second step, the best ensemble classifier was selected
and applied again on an over-sampled dataset using SMOTE.
The experimental results showed that the SMOTE-Ensemble
method substantially improved the prediction performance.
In [55], an enhancement in the SMOTE-Ensemble approach
was presented using cost-sensitive learning (CSL). This
method used SMOTE for data balancing and CSL and
AdaBoost with J48 as a base learner in the classification
step. The model was compared with DT, AdaBoost with DT,
and SMOTE-AdaBoost with DT. The results showed that
CSL on the hybrid SMOTE-AdaBoost method outperformed
other methods in terms of G-mean. In [52], a framework
in which PCA was used for feature selection and ensemble
learning for classification was proposed. Four ensembles
were employed: RF, Adaboost, bagging, and classification
via regression. An improvement in prediction accuracy
of 0.6% was observed with reduced features, whereas
bagging achieved the highest average accuracy of 91.49%
among all ensembles. In [56], researchers combined multiple
kernel learning and ensemble learning and proposed a model
referred to as multiple kernel ensemble learning (MKEL).
By using metrics from open-source software, they obtained a
multiple kernel classifier through ensemble learning. Thirty
base kernels that mapped a dataset into a high-dimensional
kernel space were utilized. Boosting was used in the
ensemble process. The experimental results suggested that
MKEL was affected by the misclassification cost, and
therefore, tended to maintain a higher Pd value. Although
MKEL did not achieve the best Pf value for most of the
datasets, it achieved comparatively better results than other
classification methods. In [57], researchers combined class
overlap reduction and ensemble imbalance learning to predict
software defects. The neighborhood cleaning learning (NCL)
rule was applied to remove overlapped samples. Ensemble
random undersampling was then performed on the whole
dataset to generate a balanced dataset. Experiments were
performed on nine highly unbalanced datasets. The results
showed that the proposed method achieved the best total
performance in terms of G-mean and AUC among tested
models. Moreover, it achieved relatively higher Pd than other
methods.

The authors in [1] compared the performance of stacking,
bagging, and boosting ensemble classifiers with single
classification techniques for defect prediction. In stack-
ing, they used four base classifiers: NB, C4.5 Decision
Tree, K-Nearest Neighbor (KNN), and Sequential Minimal
Classification (SMO). They calculated diversity between
pairs of classifiers using Precision, Weighted Accuracy
& Diversity (WAD), Diversity (DIV), and the Matthews
Correlation Coefficient (MCC). The results showed that
the DIV technique, bagging and boosting outperform the
Single classifier technique by 27.2%, 8.9%, and 18.5%.
DIV and WAD techniques attained an average relative
increase of 0.52 in true positives compared to the bagging
technique. Researchers also concluded that adding more than

VOLUME 9, 2021 98761



F. Matloob et al.: Software Defect Prediction Using Ensemble Learning

three classifiers while building a stacking ensemble did not
improve the performance of the ensemble. In [3], researchers
predicted the defects in software projects using five different
ensemble methods, including bagging, boosting, random
subspace, rotation forest, and stacking. Three base learners—
linear regression (LR), multilayer perceptron (MLP), and
decision tree regression (DTR) were used to build ensembles.
The results were compared using ARE and AAE values.
Two datasets—Random Subspace with DTE and MLP—
performed best, while the third dataset—Rotation Forest—
had the lowest AAE value. Random subspace with MLP had
the lowest ARE value. Researchers concluded that Random
Subspace and Rotation Forest performed better than bagging,
boosting, and stacking, and DTR as a base learner performed
best in predicting results. In [4], researchers compared
heterogeneous and homogeneous ensemble methods and
linear and nonlinear combination rules. They evaluated
6 defect prediction techniques—DTR, LR, MLP, genetic
programming (GP), negative binomial regression (NBR), and
zero-inflated Poisson regression (ZIP)—on 15 datasets and
selected the top 3 techniques—DTR, MLP, and LR—as base
learners for ensemble models. The researchers compared the
proposed heterogeneous ensemble model with homogeneous
bagging and boosting ensembles with M5P as a base
learner. For most of the datasets, heterogeneous ensemble
methods based on nonlinear combination rules outpaced
homogeneous ensemble methods. However, heterogeneous
ensemble methods based on linear combination rules did
not show significant differences compared to homogeneous
ensemble methods. They also concluded that nonlinear-based
ensemble methods were more stable and performed better
in predicting the number of defects compared to linear
combination rule-based ensembles.

In [5], an empirical analysis of feature selection and
ensemble learning was performed. Researchers used three
heterogeneous ensemble models—BTE, MVE, and NDTF—
with two linear combinations (best in training and vot-
ing) and one nonlinear combination (DTR) rule. They
also considered 5 classification techniques—LOGR, ANN,
RBFN-RAN, RBFN-FCM, and RBFNKMC—to build a
fault prediction model. An analysis was performed on
45 datasets and concluded that MVE performed best and
ensemble methods outpaced single classifiers. It was also
observed that feature selection improved the performance
of the proposed ensemble methods. In [6], researchers
combined FS and Data Balancing (DB) with ensemble
techniques. Information Gain (IG) was utilized for FS,
and the SMOTE method was employed to balance data.
Two ensemble methods—bagging and AdaBoost.M1 with
J48 DT as a base learner—were selected. AUC and
accuracy performance measures of established ensemble
methods with IG and SMOTE showed that bagging outpaced
Adaboost.M1 in most of the datasets. Researchers in [7]
investigated resampling and ensemble techniques to improve
the prediction performance of a model. They used SMOTE
and RUS to balance instances in the dataset and one ensemble

FIGURE 3. Number of techniques reported each year grouped by type of
study.

method, AdaBoost.R2. The researchers proposed two hybrid
algorithms, namely, SmoteNDBoost and RusNDBoost, and
compared them with individual techniques. They utilized
three regression models as base learners: DTR, Bayesian
Ridge Regression (BRR), and LR. The results showed that
RusNDBoost and SmoteNDBoost performed better than
SmoteND, RusND, and AdaBoost.R2 in most cases. Through
fault-percentile-average (FPA) values, the RusNDBoost per-
formed better than SmoteNDBoost with DTR and LR
as a base learner and subsequently showed better results
with BRR. In [8], researchers proposed SDP models based
on weighted randomized majority voting techniques. They
compared models build on change and static code metrics and
discovered that change metrics showed better performance
than static code metrics and a combined set of these metrics.
The proposed model consisted of two steps. The first step
was a metric selection, and the second step created an
ensemble classifier using 4 types of weighted voting majority
techniques. These techniques were the Weighted Major-
ity Voting (WM), Randomized Weighted Majority Voting
(RWM), Cascading Weighted Majority Voting (CWM), and
Cascading Randomized Weighted Majority Voting (CRWM)
techniques. Five base classifiers—NB, C4.5, LR, SVM, and
RF—were also employed in the building ensemble. The
results showed that CRWM based on 5 classifiers performed
best in almost all cases. In [9], a two-phase defect prediction
model, SDAEsTSE, was proposed. This model was based on
Stacked De-noising Auto Encoders (SDAEs) and Two-Stage
Ensemble Learning (TSE). The first phase was the deep
learning phase to extract deep representations, and the second
phase was the ensemble learning phase, in which logistic
regression was employed as base learners of Bagging and
AdaBoost. TSE was compared with baseline methods, where
RF, bagging, and AdaBoost outperformed in the majority of
cases. SDAEsTSE was compared with state-of-the-art defect
prediction models—RF, Bayesian networks (BN), (NB), and
AdaBoost_NN (AB_NN)—which outpaced in terms of the
AUC, MCC, and F-measure in the majority of cases.

In [10], researchers proposed TLEL, a two-layer ensem-
ble learning approach to leverage ensemble methods by

98762 VOLUME 9, 2021



F. Matloob et al.: Software Defect Prediction Using Ensemble Learning

hybridizing bagging and stacking. In this model, the first
layer used bagging with DT to build the RF model; in
the second layer, many RF models were combined using
stacking to predict just-in-time defects. The proposed model
was compared with three baseline methods: Deeper, DNC,
and MKEL. The results showed that TLEL achieved a
higher percentage of buggy instances when 20% of the
code was reviewed. Four models were also compared based
on precision and recall: TLEL showed better performance
than the other three methods across five datasets. In [66],
researchers performed a replication study to verify the results
obtained by [10]. They also proposed a deep super learner
(DSL), in which they generalized the original approach by
using any arbitrary set of classifiers in the ensemble, opti-
mized the weights of the classifiers, and allowed additional
layers. The experimental results showed that DSL achieved a
significantly better F1 score than the original method. In [11],
two combination rules for combining base learner output
were analyzed by researchers. The authors presented the
Linear Regression-based Combination Rule (LRCR), which
is a linear combination rule, and the Gradient Boosting
Regression-based Combination Rule (GRCR), which is a
nonlinear combination rule approach. To select the base
learner for the ensemble method, they compared five predic-
tion techniques: LR, MLP, GP, ZIP, and NBR. Comparative
analysis showed that LR, GP, and MLP had a lower AAE
and ARE than the other two techniques, and therefore, were
selected as base learners for ensemble methods. A relative
comparison of the LRCR and GRCR combination rule-based
ensemble methods showed that the GRCR performed better
than the LRCR across multiple datasets. In [12], researchers
reinforced two rules while building an ensemble method. The
first rule stated that the output of base learners should be
combined in a way that strengthens correct decisions and
disregards incorrect decisions. The second rule stated that
diverse classifiers should be employed as base learners. They
analyzed the impact on the prediction performance of the
defect prediction model with and without applying SMOTE,
AdaBoost, and bagging as meta classifiers and NB, MLP,
and J48 as base classifiers. The results of the comparison
showed that the stacking ensemble with SMOTE provided
better performance than that without SMOTE. The choice of
a meta classifier did not show any significant differences in
the performance of the ensemble model.

In [67], researchers used Adaboost, bagging, RSM, RF,
and Vote ensembles to analyze defect prediction. J48 was
utilized as a base learner for these ensembles. In the first
step, an optimal ensemble (i.e., RF) was selected using
experimentation. In the next step, SMOTE and Resample
were applied for class balancing on the dataset, and
classification was performed using an optimal ensemble from
the previous step. The results obtained after classification
confirmed the improvement in performance by combining
sampling techniques with an ensemble classifier. In [68],
ten ensemble classifiers were compared to baseline clas-
sifiers. The evaluated ensemble learning algorithms were

adaBoostM1, LogicBoost, Multiboost AB, Bagging, RF,
Dagging, Rotation forest (ROF), stacking, multi scheme,
and voting. Base classifiers included NB, LR, MLP, RBF,
SMO, Pegasos, Voted Perceptron, Instance-based Learner,
KStar, Jrip, OneR, PART, J48, CART,Hyperpipes, andVoting
Feature Intervals. The results showed that the ensemble
classifier did increase the prediction performance compared
to a base classifier. Among the ensembles, RF was mentioned
as a highly developed ensemble classifier. Other successful
ensembles include ROF, Logic Boost, Adaboost, and Voting.
Moreover, for ROF, AB, and RF, it was shown that increasing
the number of base classifiers enhanced performance.

In [69], researchers analysed and compared the prediction
performance of seven Tree-based ensembles in defect predic-
tion. Two bagging ensembles, i.e., random forest and Extra
Trees, and five boosting ensembles, i.e., Ada boost, Gradient
Boosting, Hist Gradient Boosting, XGBoost and CatBoost,
were employed. The empirical results showed the better per-
formance of Tree-based bagging ensembles over Tree-based
boosting ensembles. However, in prediction performance,
none of the Tree-based ensembles was significantly lower
than individual decision trees. Moreover, Adaboost ensemble
was the worst performing ensemble among all Tree-based
ensembles. In [70], researchers used RF and XGBoost to
propose a defect prediction model for Cross-project defect
prediction (CPDP). They propose a three-stage framework.
In the first stage, PCA for dimensionality reduction of the
dataset into two components was applied. In the second
phase, SMOTE was applied to solve the class imbalance
problem. The ensemble classifiers RF and XGBoost were
applied. Experimental analysis showed that the proposed
framework performed better than some baseline methods.

In [71], reseachers proposed a model to predict defect
across projects with a heterogeneous metric set (HDP). They
selected datasets and removed the common metric to make it
heterogeneous in nature. Subsequently, steps such as feature
selection, metric matching, maximum weighted bipartite
matching, feature transformation and ensemble learning
techniques, were applied. They applied a voting ensemble
classifier with 11 base classifiers. Their technique showed
promising results with the highest AUC of 0.93 in one group
of source and target datasets. In [72], researchers proposed a
method using SMOTE and homogeneous ensemble methods
(bagging and boosting) to improve the performance of defect
prediction models. They employed DT and BN as baseline
classifiers in their model. Their experimental results showed
that the proposed method significantly outperformed base
classifiers.

In [73], researchers empirically accessed the performance
of seven ensemble techniques, namely, Dagging, Decorate,
Grading, MultiBoostAB, RealAdaBoost, Rotation Forest,
and Ensemble Selection. Naive Bayes, logistic regression,
and J48 (decision tree) were used as base learners. An experi-
mental analysis showed that for most cases, the Rotation For-
est yielded better performance compared to other ensemble
techniques. MultiBoostAB, Decorate, and Dagging produced

VOLUME 9, 2021 98763



F. Matloob et al.: Software Defect Prediction Using Ensemble Learning

better performance in some cases. This finding concluded
that J48 as a base learner improved prediction performance,
whereas NB as a base learner generally resulted in the
inferior performance of the ensemble techniques. In [74],
researchers proposed a model based on feature selection,
feature extraction, class balancing and ensemble learning.
First, they compared FS techniques, such as Recursive Fea-
ture Elimination (RFE), Correlation-based feature selection,
Lasso, Ridge, ElasticNet and Boruta. Logistic regression,
decision Trees, K-nearest neighbor, support vector machines
and ensemble learning. RFE performed better for most of
the datasets. Therefore, the proposed method combined PLS
Regression with RFE. Five models were created using PLS,
RFE, SMOTE and one of the five best performing algorithms,
i.e., XGBoost, Stacking, Random Forest, Extra Trees and
AdaBoost. The results showed that XGBoost and Stacking
gives better results.

Summary: Many ensemble learning methods were
proposed from 2012 to 2021. Researchers proposed
hybrid frameworks using ensemble learning, feature
selection, and class imbalance techniques. Frequently
utilized ensemble methods are the random forest,
boosting, and bagging. Less commonly employedmeth-
ods in our selected primary studies include stacking,
voting and Extra Trees. Frameworks such as EMKCA,
SMOTE-Ensemble, MKEL, SDAEsTSE, TLEL, and
LRCR with improved classification performance were
proposed using ensemble learning methods.

FIGURE 4. 4 Performance measure and corresponding number of primary
studies.

RQ2: Which evaluation criterion is used to measure the
performance of ensemble learners?

Scholars used various combinations of performance mea-
sures to evaluate the prediction ability of ensemble learners.
Fig 4 shows the distribution of studies over performance
measures. The APE model in [40] and performance results
of the proposed model in [46]–[48], [53], [58], [59], [63]
were evaluated using AUC. In [42], performance was
compared using AUC, TP-rate, FP-rate, and F-measure.
In [43], the root mean square error (RMSE) and AUC
were used to compare performance. In [1], the MCC

was employed to evaluate bagging, boosting, and stacking
ensembles. Researchers in [9] applied the F-measure and
AUC in addition to the MCC. In [12], the MCC, TP-rate,
FP-rate, Precision, Recall, F-measure, AUC, and PRC were
employed to evaluate the heterogeneous stacking model.
Researchers in [3], [4], [7], [11] used the Average Absolute
Error (AAE) and Average Relative Error (ARE) as a
performance measure in addition to other measures, such as
RMSE, prediction at level l, and measure of completeness.
In another study [50], performance measure recall, precision,
accuracy, and F-value were used to evaluate and compare
results. Other performance measures that were frequently
applied include accuracy in [5]–[6], [8], [44], [49], [52],
and [64]; PofB20 by [10]; and the Kolmogorov–Smirnov
(K-S) test in [11]. In [41], the results of Auto-Weka and Auto-
PBIL-Ens models were compared using mean error rates.
In [51], [55], accuracy, recall (Pd), Number of Incorrectly
Predicted cases with No Defects (PF), and G-mean were
utilized as performance measures. In [54], [57], AUC, recall,
Pf, and G-mean and balance were used for evaluation. In [56],
Pd, Pf, and F-measure were applied. In [65], the MCC
and F-measure were used to compare the performances
of classifiers against 600 defect prediction performances
reported in published studies. In [60], the F1 score and
cost-effectiveness were used to measure the efficiency of
ELBlocker. In [62], weighted precision and weighted recall
were utilized to compare the cost of classifiers. In [67],
precision rate, f-measure and AUC were applied to evaluate
the defect prediction model. [68] used F-measure and AUC
only to evaluate performance. In [69], AUC and accuracy
were employed as a measure to compare performance.
In [70], [74], researchers used Accuracy, precision, Recall
and f-measure to compare the performance of their proposed
models. In [71], the AUC, recall, precision and F-measure
were used to measure the performance of the proposed
ensemble learning technique. In [72], the AUC, Accuracy and
F-measure are employed to measure the performance of the
proposed defect prediction model. In [73], five performance
measures, namely precision, recall, AUC (area under ROC
curve), specificity, and G-means were used.

A brief description of the performance measures used
in Primary Studies is detailed as follows: MCC takes into
account all true and false positives and negatives to determine
the quality of binary classification [14]. AAE is the difference
between the actual value and the predicted value of several
defects. AAE shows the closeness of the predicted value to
the actual value. ARE takes into account the size of the object
that is being measured and determines the size of the absolute
error. The K-S test is performed to determine the goodness-
of-fit that evaluates how effective an ensemble method is at
predicting defects. The F-measure is the harmonic mean of
precision and recall, while the AUC is a trade-off between
the True Positive Rate (TPR) and the False Positive Rate
(FPR), which indicates the effectiveness of the classifier
to correctly predict classes. PofB20 is the percentage of
defects that can be obtained by inspecting 20% of the line

98764 VOLUME 9, 2021



F. Matloob et al.: Software Defect Prediction Using Ensemble Learning

of code [13]. Recall (TPR) measures the ratio of correctly
classified positive instances to the actual number of positive
instances, where precision is a measure of correctly classified
positive instances out of all positive instances [31].

To further analyze and compare results, researchers also
utilized different comparison and measurement techniques,
such as box plot analysis [11] of the AAE and ARE
measure to identify variations in the samples; W/D/L [7]
(win/ draw/loss) to compare the number of datasets on which
their proposed method performed the best, same or worse
than other methods; the Wilcoxon signed-rank test [4], [5],
[9], [11] to compare the classification technique and selected
source of metrics to identify the best performer [4], [11]; the
two-tailed Friedman’s test to measure the difference between
prediction models and Cliff’s delta [9] to determine the effect
of size.

Summary: Most common performance measures
include AUC, accuracy, F-measure, Recall, Precision,
and MCC. While less common measures include
RMSE, Average Absolute Error (AAE), Average Rel-
ative Error (ARE), FRP, G-mean, Pf, Pd, and PofB20.

RQ3: What are the most commonly employed tools to
implement ensemble learning techniques?

Various data mining tools have been developed to
perform predictive analysis on data using different machine
learning classifiers. These tools have the ability to identify
some meaningful patterns in data to gain hidden knowl-
edge [15]. Each tool comes has different capabilities;
therefore, researchers choose tools according to their
selected machine learning methods. Fig 5 shows the
distribution of primary studies over machine learning
tools and libraries. In our selected primary studies,
we determined that Waikato Environment for Knowledge
Analysis (WEKA) is the most frequently utilized machine
learning tool to explore, visualize and perform classification
over data [1], [3], [4], [6], [8], [9], [11], [12], [41],
[43], [45], [50]–[55], [58], [60], [62]–[64], [67], [68], [73].
Other tools include MATLAB [9], [11], [47], [48] and
sklearn [7], which is a python machine learning library
and LIBSVM [56]. In [40], all evaluated algorithms were
implemented in python language. However, the machine
learning tool was not mentioned in the study. In [59],
KEEL software was used to perform classification on KEEL
datasets. In [69], researchers applied scikit-learn, CatBoost
and XGBoost libraries to build tree-based ensembles.

Summary: WEKA was adopted by the majority of
the studies. Other tools include MATLAB, LIBSVM,
KEEL, and sklearn

RQ4: Which datasets are used to analyze the performance
of ensemble learning techniques?

A dataset is a collection of historical software data that is
applied to predict bugs in code before the release of software.

FIGURE 5. Distribution of primary studies over machine learning tool/
Library.

FIGURE 6. Distribution of studies over types of dataset repositories.

Scholars discovered that different classification algorithms
perform better on different datasets. Therefore, most of the
selected studies are using multiple sets of datasets from a
different domain to manifest the potency of the proposed
ensembles. Fig 6 shows the distribution of studies over
dataset repositories used in selected primary studies. Most
of the selected primary studies used a publicly available
dataset from PROMISE repository [1], [4]–[7], [11], [12],
[42], [50], [51], [54], [55], [57], [63], [64], [68], [73]. This
repository contains datasets with three types of software met-
rics, namely, CK Object-Oriented metrics, Halstead/McCabe
procedural code metrics, and some other static code metrics.
In [4], researchers have presented details of five projects’
datasets viz., Xerces, Camel, Xalan, Ant, and PROP. These
projects were written in java and C++. They selected
15 releases of these five projects, which contained more
than 500 software modules. These datasets contained several
object-oriented (OO) metrics that were determined to per-
form better for fault prediction problems [16], [17]. Scholars
in a study [11] also utilized the same set of datasets in addition
to the Jedit software project. They selected 11 releases
of 6 projects, which contained more than 300 software
modules. Researchers in [5] compared models on 45 releases
of 18 software projects, namely, Ant, arc, berek, camel,
e-learning, ivy, jedit, kalkulator, log4j, lucene, pdftranslator,
prop, redactor, serapion, synapse, termoproject, velocity,
and xereces. In [1], researchers analyzed the performance

VOLUME 9, 2021 98765



F. Matloob et al.: Software Defect Prediction Using Ensemble Learning

of prediction models on 4 software projects: Ant, Jedit,
Tomcat and Xalan. In [7], researchers implemented ensemble
models on 22 releases of 6 software projects: Ant, Camel,
Jedit, Synapse, Xalan, and Log4j. These datasets contained
20 independent software metrics and 1 dependent number of
defect variables. PC3, JM1, CM1, and KC1 were employed
in [51]. In [50], 12 datasets from the PROMISE repository
were utilized: Ant, Camel, e-learning, Forest, Jedit, Tomcat,
Xalan, Xerces, Zuzel, Berek, Pbean2, and velocity. In [40],
the research used Ant 1.7 and Camel 1.6 in addition to
the NASA datasets KC3, MC1, PC2, and PC4. In [43], the
Eclipse package level dataset and NASA KC1 dataset were
used to conduct classification experiments. In [44], CM1,
KC1, and KC2 datasets were selected from the NASA
dataset repository. In [12], researchers applied only one
dataset, PC1, which was created by the NASA Metric Data
Program (MDP), which contained 22 features. This dataset
had a very small number of truly defective software, making
it suitable for a class imbalance problem study. In [6],
researchers selected datasets that had McCabe and Halstead
Static Code Metrics. They selected 8 NASA software project
datasets; AR1, AR4, JM1, KC2, MC1, MW1, PC3, and
PC4. Researchers in [9] used 12 public NASA datasets from
the PROMISE and tera-PROMISE repositories, including
CM1, KC1, KC2, KC3, MC1, MC2, MW1, PC1, PC2, PC3,
PC4, and JM1. In [52], 5 datasets from NASA MDP—PC2,
PC3, CM1, KC3, and MW1— were employed. In [53], all
14 datasets from NASA were applied. Similarly, in [54],
12 NASA datasets were used. In [62], MC1, MC2, KC1,
PC1, and PC2 from NASA MDP utilized. In [67], 5 datasets
from NASA MDP—CM1, JM1, KC1, KC2, and PC1—were
selected. Researchers in [3, 46] used software data from three
releases of Eclipse projects, which was an IDE developed
by IBM. These datasets comprised 32 software metrics
related to various source code and structural measures.
Researchers in [8] applied the dataset of Apache open-source
java projects found in the Apache subversion website.
In [10], [66], researchers build a defect prediction model for
just time prediction on six large-scale change-based software
projects’ datasets, i.e., Bugzilla, Columba, Eclipse JDT,
Eclipse Platform, Mozilla, and PostgreSQL. These datasets
also contained imbalanced class data. In [58], 16 datasets
were employed to evaluate ensembles of feature ranking
techniques, including LLTS, Eclipse, and KC1. In [59],
44 datasets from the KEEL repository were utilized. In [60],
datasets of 6 open-source software projects—Freedesktop,
Chromium, Mozilla, NetBeans, OpenOffice, and Eclipse—
were applied.

In [65], 12 NASA datasets, 3 open-source datasets—
Ant, Ivy, and Tomcat—and 3 commercial telecommunication
datasets were employed to perform an analysis of datasets
with different metric granularity and software domains.
Researchers in [41] and [47] utilized 15 datasets and
11 datasets, respectively, from the UCI machine learning
repository for classification purposes. In [49], researchers
selected covtype and ijcnn1 data sets to evaluate the

EnsembleSVM library. In [48], 30 projects were collectively
obtained from NASA, Softlab, Relink, AEEEM, and
PROMISE repository. In [69], 11 datasets of NASA software
projects were employed; in [72], 5 datasets of NASA
software projects were utilized. In [70], researchers selected
five projects with a homogeneous set of metrics from
http://openscience.us and www.Promisedata.org. In [71],
three datasets each were selected from NASA, AEEEM,
ReLink and SOFTLAB repositories. They removed common
metrics from the selected datasets so that they become het-
erogeneous in nature. In [73], 28 dataset were selected from
the PROMISE repository. Datasets of several open-source
software systems, such as Apache Camel, Apache Xerces,
Apache Xalan, PROP, etc., were selected. In [74], CM1, PC1,
KC1 andKC2 datasets were obtained from the PROMISE and
NASA repository.

Summary: Most of the researchers applied datasets
from the PROMISE and NASA MDP repositories.
Some researchers used the Eclipse dataset developed by
IBM. Others used datasets from the UCI machine learn-
ing repository, Apache, Bugzilla, Columba,Mozilla and
PostgreSQL, Softlab, Relink, and AEEEM software
projects.

RQ5: With which technique (s) is the proposed ensemble
method is compared?

To measure the effect and potency of proposed ensemble
approaches, researchers compared the performance with
individual classifiers. After analyzing selected primary
studies, we can infer that ensemble methods showed better
performance than individual classifiers in a majority of
the cases. The proposed model in [53] was compared
to RUS, ROS, SMOTE, cost-sensitive learning, bagging,
and boosting. The proposed model outperformed all meth-
ods except bagging, with which comparable results were
achieved. In classification, RF outperformed C4.5, NB, and
Ripper. In [59], researchers compared ensemble methods for
class imbalance problems with classic ensembles and the
nonensemble classifier (C4.5 and SMT). The results showed
that ensemble methods significantly improved the perfor-
mances compared to the results obtained by the mere use
of preprocessing techniques. In [60], ELBlocker employed
an ensemble of multiple classifiers to predict the likelihood
of a blocking bug. The model was compared with Garcia
and Shihab’s method [61], SMOTE, one-sided selection
(OSS), and Bagging. ELBlocker achieved F1 and ER@20%
scores of 0.345 and 0.668, respectively. The improvement
in ELBlocker over Garcia and Shihab’s method, SMOTE,
OSS, and bagging was statistically significant. In [62],
proposed CSForest and CSVoting were compared with two
cost-sensitive classifiers, named Weighting and CSTree, and
two cost-insensitive classifiers named C4.5 and SysFor. The
proposed technique achieved the lowest classification cost in
all 6 datasets. In [54], five data balancing techniques were
comparedwith NB andRF as learners. These techniques were

98766 VOLUME 9, 2021



F. Matloob et al.: Software Defect Prediction Using Ensemble Learning

RUS, Balanced RUS, threshold moving, SMOTEBoost, and
AdaBoost.NC (DNC). DNC achieved the best balance and
AUC in 8 of 10 cases.

In [63], the performance of bagging, boosting, and stacking
ensembles were compared to 11 base classifiers, which
were also employed as base classifiers in these ensembles.
Using the Wilcoxon signed ranked test, they showed that
the performances of NB, Bayes net, PART, RF, IB1,
VFI, decision table, and NB tree base learners, were the
same as those of ensemble learner classifiers. However,
for boosted SMO, bagged J48 and boosted and a bagged
random tree performance increase was observed compared
to base classifiers. In [64], the performance of RF was
compared to 4 classifiers: Fuzzy Unordered Rule Induction
Algorithm (FURIA), MLP, NB, and KStar on the PC1,
PC2, PC3, and PC4 datasets. Bat search, genetic search,
and ant search were applied in the feature selection step.
All three feature selection methods worked best with RF
compared to other classifiers, whereas the combination of bat
search and RF stood out among all cases. In [50], stacking,
vote, and AdaBoost ensembles were compared with each
other and base classifiers. Although there was variation in the
performance of classifiers on different datasets, on average
StackingC outperformed other ensembles. When compared
with base classifiers, it was observed that either performance
of ensemble remained the same or was improved, except
for j48 for the tomcat dataset. The proposed model APE
in [40] was compared with W-SVMs and RF. APE achieved
the highest performance in all six datasets applied in the
study. APE achieved the highest AUC 0.91 in the PC2 dataset,
and enhanced APE achieved the highest accuracy of 0.98 in
the MC1 dataset. No conventional method outperformed
the proposed model in any dataset. In [42], the proposed
ensemble oversampling technique was compared with the
individual sampling methods ROS, MWM, and FIDos. The
results showed that the proposed ensemble method achieved
the lowest FP-Rate at 39% and achieved the highest AUC
values in 68% of cases among all datasets and all approaches.
In [43], the Bagged SVM was compared with the baseline
SVM model using package level and class level metrics. The
bagged SVM achieved AUC values of 0.78 and 0.832 for
package-level metrics and class level metrics, respectively,
whereas the SVM achieved AUC values of 0.721 and
0.798 for package-level metrics and change level metrics,
respectively. Researchers in [47] compared the error score of
the proposed model with the error score reported by three
recent papers. Through comparison, it was shown that the
proposed approach achieved lower classification errors in
most cases.

In [48], proposed EMKCA was compared to WPDP,
NN-filter, VCB, SSTCA+ISDA, CPDP-IFS, CCA+, HDP-
KS, and CCT-SVM. The results compared using the AUC
in 30 projects indicated that EMKCA outperformed in most
cases. EMKCA attained the highest mean AUC among all
classifiers. In [49], researchers compared EnsembleSVM and
LIBSVM library on two datasets, covtype and ijcnn1, using

accuracymeasures. For covtype, the EnsembleSVMaccuracy
was 3% lower than LIBSVM; for ijcnn1, EnsembleSVMwas
0.2% better than LIBSVM. The results showed no signifi-
cant difference in performance. However, the difference in
training time between the two libraries is significant. The
EnsembleSVM trained the model in 35 sec and 0.3 sec for
the covtype dataset and ijcnn1 dataset, respectively, whereas,
LIBSVM trained the models in 728 sec and 9.5 sec for both
datasets. In [51], an experiment was performed in three steps;
1) NB, MLP, and J48 were applied on datasets; 2) ensemble
classifiers RF, bagging, and AdaBoost were applied, and
3) SMOTE combined with the best ensemble from the
previous stage was applied. The results showed that SMOTE
with ensemble obtained better results compared to other
methods.Moreover, AdaBoost achieved the best performance
among ensembles on four datasets. These results were further
compared with the method proposed in [55], where a CSL
was employed with AdaBoost in the classification step.
The results showed that CSL on hybrid SMOTE-AdaBoost
achieved the highest G-mean in all four datasets among
DT, AdaBoost, and SMOTE-AdaBoost. In [56], MKEL
was compared with coding-based ensemble learning [53],
AdaBoost.NC [54], weighted Naïve Bayes, Compressed
C4.5 decision tree (CC4.5), Cost-sensitive Boosting Neural
Network (CBNN), and Asymmetric Kernel Principal Com-
ponent Classification (AKPCC). The average Pd and Pf
values of MKEL on the 12 NASA datasets were 0.68 and
0.26, which was higher than the corresponding values of
all other methods. MKEL also achieved a higher F-measure
than other methods with an average of 0.48 on 12 datasets.
In [56], the proposed method was compared with ensemble
random under-sampling without NCL, NB, RFNB+log
filter, Dynamic AdaBoost.NC, SMOTE+NB, RUS+NB,
SMOTEBoost, and RUSBoost. The results showed that
more complicated imbalance methods, such as ERUS,
DNC, SMOTEBoost, and RUSBoost, generated better results
than NB. With a relatively higher Pd and the best total
performance in terms of AUC and G-mean, the proposed
method confirmed the importance of implementing NCL as a
preprocessing step.

Researchers in [1] compared NB, KNN, SMO, j48 with
WAD and DIV stacking ensembles. The results showed that
WAD and DIV showed better performance by 18.2% for NB,
31.4% for KNN, 22.3% for SMO, and 20.1% for J48. These
results were further fortified by the Wilcoxon significance
test. In a study [3], the researchers showed the improved
performance of the ensemble method: random subspace
and rotation forest over base learners for all three datasets.
However, they also showed that in some cases, base learners
provided better performance; for example, stacking with
MLP and boosting with MLP showed the worst performance
than the individual base learner. The comparison results
were presented in the study [5], which also strengthened
the conclusion drawn in other primary studies that ensemble
methods outperformed in prediction performance compared
to single classifiers.

VOLUME 9, 2021 98767



F. Matloob et al.: Software Defect Prediction Using Ensemble Learning

In [8], NB, LR, C4.5, SM, and RF were compared with
multiple ensembles learners; it is found that in almost
all cases, CRWM performed better in terms of f-measure,
accuracy, and AUC values. In [9], researchers performed a
comparative analysis on the proposed approach SDAEsTSE
and the baseline approaches on each of the selected datasets
in terms of F1, AUC, and MCC using the W/D/L method.
The results showed that in the majority of the experiments,
the ensemble approach SDAEsTSE outperformed the base-
line methods. In [10], TLEL was compared with three
baseline methods: Deeper, DNC, and MKEL. The results
showed that the proposed approach could discover 70% of
just-in-time defects by analyzing only 20% of the line of
codes, while the baseline method DNC achieved a maximum
value of 55% defective changes. Comparative results in the
study [11] also reinforce the conclusion drawn from RQ5.
The results showed that GBCR performed better than indi-
vidual baseline methods in most cases. In [12], researchers
compared the base learners MLP, NB, and J48 with and with-
out the SMOTE technique and found no significant difference
in the classifier’s performance in both cases. However, when
stacking was applied with SMOTE, an eminent performance
improvement was observed in defect prediction models.

In [67], five ensemble classifiers—Adaboost, Bagging,
RSM, RF, and Vote—were compared among themselves and
to a single classifier J48. J48 was also used as a base learner
in the ensembles. Using precision rate, F-measure and AUC,
it was shown that the classification performance of all ensem-
bles was better than that of the single classifier. Moreover,
RF outperformed other ensembles. In [68], ten ensemble
classifiers were compared to 16 baseline classifiers. The
ensemble learning algorithms that were evaluated included
adaBoostM1, LogicBoost, Multiboost AB, Bagging, RF,
Dagging, Rotation forest (ROF), stacking, multi scheme,
and voting. Base classifiers included NB, LR, MLP, RBF,
SMO, Pegasos, Voted Perceptron, Instance-based Learner,
KStar, Jrip, OneR, PART, J48, CART, Hyperpipes, and
Voting Feature Intervals. The results were compared using the
F-measure and AUC. The average highest F-measure among
base classifiers was 0.802 by J48, whereas the average highest
AUC was 0.743 by MLP. The average highest F-measure and
AUC of 0.808 and 0.776, respectively, among the ensemble
classifiers was achieved by ROF.

In [69], researchers compared the prediction performance
of individual decision tree classifiers to tree-based ensembles,
including Extra Trees (ET), XGBoost, Cat-Boost, Gradient
Boosting, Hist Gradient Boosting, AdaBoost and RF. They
discovered that the decision tree classifier performed worst
for all defect datasets, whereas Tree-based ensembles showed
a consistent higher prediction performance, except the Ada
ensemble. Among all ensembles, RF and ET bagging
ensembles showed a higher prediction performance. In [70],
researchers proposed a three-step framework for CPDP. They
compared its performance with traditional within-project
defect prediction (WPDP) and found that the highest accuracy
achieved using this framework in CPDP is 0.91, which is

comparable to the highest accuracy of 0.93 obtained for
WPDP. They concluded that PCA and SMOTE improved the
performance of the ensemble classifier in CPDP.

In [72], the performance of DT and BN was compared
to a SMOTE-based homogeneous ensemble method. In this
method, bagging and boosting ensembles were employed
with DT and BN as base classifiers. They concluded that
SMOTE improved the performances of classifiers. Moreover,
BoostedDT+ SMOTE achieved the highest average accuracy
of 86.8%. The total results suggested that BoostedBN
+ SMOTE and BoostedDT + SMOTE were superior to
BaggedBN + SMOTE and BaggedDT + SMOTE. In [73],
seven ensemble techniques were compared on 28 datasets.
The experimental analysis revealed that the rotation forest
with J48 as the base learner achieved the highest precision,
recall, and G-mean values of 0.995, 0.994, and 0.994,
respectively and Decorate achieved the highest AUC value
of 0.986. In [74], machine learning classifiers, such as MLP,
LR, DT, KNN, SVM, RF, ET, Bagging, AdaBoost, Gradient
Boosting, XGBoost and Stacking, were compared. Stacking
and XGBoost outperformed all other classifiers in all four
datasets in terms of precision, recall, accuracy and F-measure.
XGB and Stacking achieved the highest accuracy of 0.968 in
the PC1 dataset.

Summary: In a majority of the research papers,
researchers compared the performance of ensemble
learning/hybrid frameworks with base classifiers, such
as DT, MLP, SVM, NB, and KNN. The performance of
the models were also compared with and without cases
of feature selection and class imbalance techniques.
SMOTE and RUS were mostly employed for data
sampling. Our review showed that in most cases,
ensemble learning techniques performed better than
base classifiers. Moreover, our study revealed that
feature selection and data sampling were important
pre-processing steps that improve the performance of
classifiers.

IV. CONCLUSION
In this paper, an SLR is conducted to track the most
recent research advances in ensemble learning techniques
for software defect prediction. This review is performed
after critically analyzing the most relevant research papers
published in three well-known online libraries ACM, IEEE,
Springer Link, and Science Direct. Five research questions
regarding the different aspects of research progress on the use
of ensemble learning techniques for software defect predic-
tion are defined and addressed in this study. It is concluded
that ensemble learning techniques performed significantly
better than individual classifiers. In the future, a review
of the effects of feature selection techniques on ensemble
learning should be performed. Moreover, the diversity of
classifiers, while building the ensemble model, should also
be investigated to improve the effectiveness of the ensembles.

98768 VOLUME 9, 2021



F. Matloob et al.: Software Defect Prediction Using Ensemble Learning

REFERENCES
[1] J. Petrić, D. Bowes, T. Hall, B. Christianson, and N. Baddoo, ‘‘Building an

ensemble for software defect prediction based on diversity selection,’’ in
Proc. 10th ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas., Sep. 2016,
pp. 1–10.

[2] A. N. R. Moparthi and B. D. N. Geethanjali, ‘‘Design and implementation
of hybrid phase based ensemble technique for defect discovery using
SDLC software metrics,’’ in Proc. 2nd Int. Conf. Adv. Electr., Electron.,
Inf., Commun. Bio-Inform. (AEEICB), Feb. 2016, pp. 268–274.

[3] S. S. Rathore and S. Kumar, ‘‘Ensemble methods for the prediction of
number of faults: A study on eclipse project,’’ in Proc. 11th Int. Conf. Ind.
Inf. Syst., Dec. 2016, pp. 540–545.

[4] S. S. Rathore and S. Kumar, ‘‘Linear and non-linear heterogeneous
ensemble methods to predict the number of faults in software systems,’’
Knowl.-Based Syst., vol. 119, pp. 232–256, Mar. 2017.

[5] L. Kumar, S. Rath, and A. Sureka, ‘‘An empirical analysis on effective fault
prediction model developed using ensemble methods,’’ in Proc. Int. Annu.
Comput. Softw. Appl. Conf., vol. 1, Jul. 2017, pp. 244–249.

[6] C.W. Yohannese, T. Li, M. Simfukwe, and F. Khurshid, ‘‘Ensembles based
combined learning for improved software fault prediction: A comparative
study,’’ in Proc. 12th Int. Conf. Intell. Syst. Knowl. Eng., Nov. 2017,
pp. 1–6.

[7] X. Yu, J. Liu, Z. Yang, X. Jia, Q. Ling, and S. Ye, ‘‘Learning from
imbalanced data for predicting the number of software defects,’’ in Proc.
Int. Symp. Softw. Rel. Eng. (ISSRE), Oct. 2017, pp. 78–89.

[8] S. Moustafa, M. Y. ElNainay, N. E. Makky, and M. S. Abougabal,
‘‘Software bug prediction using weighted majority voting techniques,’’
Alexandria Eng. J., vol. 57, no. 4, pp. 2763–2774, Dec. 2018.

[9] H. Tong, B. Liu, and S. Wang, ‘‘Software defect prediction using stacked
denoising autoencoders and two-stage ensemble learning,’’ Inf. Softw.
Technol., vol. 96, pp. 94–111, Apr. 2018.

[10] X. Yang, D. Lo, X. Xia, and J. Sun, ‘‘TLEL: A two-layer ensemble learning
approach for just-in-time defect prediction,’’ Inf. Softw. Technol., vol. 87,
pp. 206–220, Jul. 2017.

[11] S. S. Rathore and S. Kumar, ‘‘Towards an ensemble based system for
predicting the number of software faults,’’ Expert Syst. Appl., vol. 82,
pp. 357–382, Oct. 2017.

[12] S. A. El-Shorbagy, W. M. El-Gammal, and W. M. Abdelmoez, ‘‘Using
SMOTE and heterogeneous stacking in ensemble learning for software
defect prediction,’’ in Proc. 7th Int. Conf. Softw. Inf. Eng., 2018, pp. 44–47.

[13] S. Wang, T. Liu, J. Nam, and L. Tan, ‘‘Deep semantic feature learning
for software defect prediction,’’ IEEE Trans. Softw. Eng., vol. 46, no. 12,
pp. 1267–1293, Dec. 2020.

[14] S. Boughorbel, F. Jarray, and M. El-Anbari, ‘‘Optimal classifier for
imbalanced data using Matthews correlation coefficient metric,’’ PLoS
ONE, vol. 12, no. 6, pp. 1–17, 2017.

[15] A. Sharma and B. Kaur, ‘‘A research review on comparative analysis of
data mining tools, techniques and parameters,’’ Int. J. Adv. Res. Comput.
Sci., vol. 8, no. 7, pp. 523–529, 2017.

[16] J. Petrić, D. Bowes, T. Hall, and N. Baddoo, ‘‘The jinx on the NASA
software defect data sets,’’ in Proc. 20th Int. Conf. Eval. Assessment Softw.
Eng., 2016, pp. 1–5.

[17] M. O. Elish, A. H. Al-Yafei, and M. Al-Mulhem, ‘‘Empirical comparison
of three metrics suites for fault prediction in packages of object-oriented
systems: A case study of Eclipse,’’ Adv. Eng. Softw., vol. 42, no. 10,
pp. 852–859, 2011.

[18] J. Mendes-Moreira, C. Soares, A. M. Jorge, and J. F. D. Sousa, ‘‘Ensemble
approaches for regression: A survey,’’ ACM Comput. Surv., vol. 45, no. 1,
pp. 1–40, 2012.

[19] S. E. Lacy, M. A. Lones, and S. L. Smith, ‘‘A comparison of evolved linear
and non-linear ensemble vote aggregators,’’ in Proc. IEEE Congr. Evol.
Comput. (CEC), May 2015, pp. 758–763.

[20] L. Lam and C. Y. Suen, ‘‘Optimal combinations of pattern classifiers,’’
Pattern Recognit. Lett., vol. 16, no. 9, pp. 945–954, 1995.

[21] J. Kittler, M. Hater, and R. P. W. Duin, ‘‘Combining classifiers,’’ in Proc.
Int. Conf. Pattern Recognit., 1996, vol. 2, no. 3, pp. 897–901.

[22] A. K. Jain, R. P. W. Duin, and J. Mao, ‘‘Statistical pattern recognition: A
review,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 1, pp. 4–37,
Jan. 2000.

[23] C. Cortes, Y. LeCun, V. Vapnik, H. Drucker, and L. D. Jackel,
‘‘Boosting and other ensemble methods,’’ Neural Comput., vol. 6, no. 6,
pp. 1289–1301, 2008.

[24] K. Stąpor, ‘‘Evaluating and comparing classifiers: Review, some recom-
mendations and limitations,’’ in Proc. Int. Conf. Comput. Recognit. Syst.,
2017, pp. 12–21.

[25] H. Hosseini, B. Xiao, M. Jaiswal, and R. Poovendran, ‘‘On the limitation
of convolutional neural networks in recognizing negative images,’’ in
Proc. 16th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), Dec. 2017,
pp. 352–358.

[26] C. D. Stefano, F. Fontanella, G. Folino, and A. S. D. Freca, ‘‘A Bayesian
approach for combining ensembles of GP classifiers,’’ in Proc. Int.
Workshop Multiple Classifier Syst., 2011, pp. 26–35.

[27] L. Rokach, ‘‘Taxonomy for characterizing ensemble methods in classifi-
cation tasks: A review and annotated bibliography,’’ Comput. Statist. Data
Anal., vol. 53, no. 12, pp. 4046–4072, 2009.

[28] J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso, ‘‘Rotation forest: A
new classifier ensemble method,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 28, no. 10, pp. 1619–1630, Oct. 2006.

[29] J. Canul-Reich, L. Shoemaker, and L. O. Hall, ‘‘Ensembles of fuzzy
classifiers,’’ in Proc. IEEE Int. Fuzzy Syst. Conf., Jul. 2007, pp. 1–6.

[30] R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer,
‘‘A comparison of decision tree ensemble creation techniques,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 29, no. 1, pp. 173–180, Jan. 2007.

[31] K. Punitha and S. Chitra, ‘‘Software defect prediction using software
metrics—A survey,’’ in Proc. Int. Conf. Inf. Commun. Embedded Syst.
(ICICES), 2013, pp. 555–558.

[32] W. Afzal, R. Torkar, and R. Feldt, ‘‘A systematic review of search-based
testing for non-functional system properties,’’ Inf. Softw. Technol., vol. 51,
no. 6, pp. 957–976, 2009.

[33] S. Keele, ‘‘Guidelines for performing systematic literature reviews in soft-
ware engineering, version 2.3,’’ Dept. Comput. Sci., School Comput. Sci.
Math., Softw. Eng. Group, Keele Univ., Keele, U.K., Tech. Rep. EBSE-
2007-01, 2007.

[34] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, ‘‘Systematic literature reviews in software engineering—
A systematic literature review,’’ Inf. Softw. Technol., vol. 51, pp. 7–15,
Jan. 2008.

[35] B. Kitchenham and S. Charters, ‘‘Guidelines for performing systematic
literature reviews in software engineering version 2.3,’’ Engineering,
vol. 45, no. 4, p. 1051, 2007.

[36] F. Anwer and S. Aftab, ‘‘Latest customizations of XP: A systematic
literature review,’’ Int. J. Mod. Educ. Comput. Sci., vol. 9, no. 12,
pp. 26–37, 2017.

[37] S. Ashraf and S. Aftab, ‘‘Scrum with the spices of agile family: A
systematic mapping,’’ Int. J. Mod. Educ. Comput. Sci., vol. 9, no. 11,
pp. 58–72, 2017.

[38] S. Ashraf and S. Aftab, ‘‘Latest transformations in scrum: A state of the art
review,’’ Int. J. Mod. Educ. Comput. Sci., vol. 9, no. 7, pp. 12–22, 2017.

[39] M. Ahmad, S. Aftab, M. S. Bashir, and N. Hameed, ‘‘Sentiment analysis
using SVM:A systematic literature review,’’ Int. J. Adv. Comput. Sci. Appl.,
vol. 9, no. 2, pp. 182–188, 2018.

[40] I. H. Laradji, M. Alshayeb, and L. Ghouti, ‘‘Software defect prediction
using ensemble learning on selected features,’’ Inf. Technol., vol. 58,
pp. 388–402, Feb. 2015, doi: 10.1016/j.infsof.2014.07.005.

[41] J. C. Xavier-Junior, A. A. Freitas, A. Feitosa-Neto, and T. B. Ludermir,
‘‘A novel evolutionary algorithm for automated machine learning focusing
on classifier ensembles,’’ in Proc. 7th Brazilian Conf. Intell. Syst.
(BRACIS), 2018, pp. 462–467, doi: 10.1109/bracis.2018.00086.

[42] S. Huda, K. Liu, M. Abdelrazek, A. Ibrahim, S. Alyahya, H. Al-Dossari,
and S. Ahmad, ‘‘An ensemble oversampling model for class imbal-
ance problem in software defect prediction,’’ IEEE Access, vol. 6,
pp. 24184–24195, 2018, doi: 10.1109/access.2018.2817572.

[43] A. Shanthini and R. M. Chandrasekaran, ‘‘Analyzing the effect of bagged
ensemble approach for software fault prediction in class level and package
level metrics,’’ in Proc. Int. Conf. Inf. Commun. Embedded Syst. (ICICES),
2014, pp. 1–5, doi: 10.1109/icices.2014.7033809.

[44] R. A. Coelho, F. D. R. Guimaraes, and A. A. Esmin, ‘‘Applying swarm
ensemble clustering technique for fault prediction using software metrics,’’
in Proc. 13th Int. Conf. Mach. Learn. Appl., 2014, pp. 356–361, doi:
10.1109/icmla.2014.63.

[45] T. M. Khoshgoftaar, K. Gao, and A. Napolitano, ‘‘Improving software
quality estimation by combining feature selection strategies with sampled
ensemble learning,’’ in Proc. IEEE 15th Int. Conf. Inf. Reuse Integr. (IEEE
IRI), Aug. 2014, pp. 428–433, doi: 10.1109/iri.2014.7051921.

[46] A. Kaur and K. Kaur, ‘‘Performance analysis of ensemble learning
for predicting defects in open source software,’’ in Proc. Int. Conf.
Adv. Comput., Commun., Informat. (ICACCI), 2014, pp. 219–225, doi:
10.1109/icacci.2014.6968438.

[47] S. Fletcher, B. Verma, Z. M. Jan, and M. Zhang, ‘‘The optimized selection
of base-classifiers for ensemble classification using a multi-objective
genetic algorithm,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), 2018,
pp. 1–8, doi: 10.1109/ijcnn.2018.8489467.

VOLUME 9, 2021 98769

http://dx.doi.org/10.1016/j.infsof.2014.07.005
http://dx.doi.org/10.1109/bracis.2018.00086
http://dx.doi.org/10.1109/access.2018.2817572
http://dx.doi.org/10.1109/icices.2014.7033809
http://dx.doi.org/10.1109/icmla.2014.63
http://dx.doi.org/10.1109/iri.2014.7051921
http://dx.doi.org/10.1109/icacci.2014.6968438
http://dx.doi.org/10.1109/ijcnn.2018.8489467


F. Matloob et al.: Software Defect Prediction Using Ensemble Learning

[48] Z. Li, X.-Y. Jing, X. Zhu, and H. Zhang, ‘‘Heterogeneous defect prediction
through multiple kernel learning and ensemble learning,’’ in Proc. IEEE
Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2017, pp. 91–102, doi:
10.1109/icsme.2017.19.

[49] M. Clasen, F. D. Smet, J. A. K. Suykens, and B. D.Moor, ‘‘EnsembleSVM:
A library for ensemble learning using support vector machines,’’ J. Mach.
Learn. Res., vol. 15, no. 1, pp. 141–145, 2014.

[50] S. Hussain, J. Keung, A. A. Khan, and K. E. Bennin, ‘‘Performance
evaluation of ensemble methods for software fault prediction,’’ in Proc.
ASWEC 24th Australas. Softw. Eng. Conf. (ASWEC), vol. 2, Sep. 2015,
pp. 91–95, doi: 10.1145/2811681.2811699.

[51] H. Alsawalqah, H. Faris, I. Aljarah, L. Alnemer, and N. Alhindawi,
‘‘Hybrid SMOTE-ensemble approach for software defect prediction,’’
in Software Engineering Trends and Techniques in Intelligent Systems
(Advances in Intelligent Systems and Computing). Cham, Switzerland:
Springer, 2017, pp. 355–366, doi: 10.1007/978-3-319-57141-6_39.

[52] N. Dhamayanthi and B. Lavanya, ‘‘Improvement in software defect
prediction outcome using principal component analysis and ensemble
machine learning algorithms,’’ in Proc. Int. Conf. Intell. Data Commun.
Technol. Internet Things (ICICI) (Lecture Notes on Data Engineering
and Communications Technologies). Cham, Switzerland: Springer, 2018,
pp. 397–406, doi: 10.1007/978-3-030-03146-6_44.

[53] Z. Sun, Q. Song, and X. Zhu, ‘‘Using coding-based ensemble learn-
ing to improve software defect prediction,’’ IEEE Trans. Syst., Man,
Cybern. C, Appl. Rev., vol. 42, no. 6, pp. 1806–1817, Nov. 2012, doi:
10.1109/tsmcc.2012.2226152.

[54] S. Wang and X. Yao, ‘‘Using class imbalance learning for software defect
prediction,’’ IEEE Trans. Rel., vol. 62, no. 2, pp. 434–443, Jun. 2013, doi:
10.1109/tr.2013.2259203.

[55] I. Abuqaddom and A. Hudaib, ‘‘Cost-sensitive learner on hybrid smote-
ensemble approach to predict software defects,’’ in Computational and
Statistical Methods in Intelligent Systems (Advances in Intelligent Systems
and Computing). Cham, Switzerland: Springer, 2018, pp. 12–21, doi:
10.1007/978-3-030-00211-4_2.

[56] T. Wang, Z. Zhang, X. Jing, and L. Zhang, ‘‘Multiple kernel ensemble
learning for software defect prediction,’’ Automated Softw. Eng., vol. 23,
no. 4, pp. 569–590, 2015, doi: 10.1007/s10515-015-0179-1.

[57] L. Chen, B. Fang, Z. Shang, and Y. Tang, ‘‘Tackling class overlap and
imbalance problems in software defect prediction,’’ Softw. Qual. J., vol. 26,
no. 1, pp. 97–125, 2016, doi: 10.1007/s11219-016-9342-6.

[58] H.Wang, T. M. Khoshgoftaar, and A. Napolitano, ‘‘Software measurement
data reduction using ensemble techniques,’’ Neurocomputing, vol. 92,
pp. 124–132, Sep. 2012, doi: 10.1016/j.neucom.2011.08.040.

[59] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera,
‘‘A review on ensembles for the class imbalance problem: Bagging-,
boosting-, and hybrid-based approaches,’’ IEEE Trans. Syst., Man,
Cybern. C, Appl. Rev., vol. 42, no. 4, pp. 463–484, Jul. 2012, doi:
10.1109/tsmcc.2011.2161285.

[60] X. Xia, D. Lo, E. Shihab, X. Wang, and X. Yang, ‘‘ELBlocker: Predicting
blocking bugs with ensemble imbalance learning,’’ Inf. Softw. Technol.,
vol. 61, pp. 93–106, May 2015, doi: 10.1016/j.infsof.2014.12.006.

[61] H. V. Garcia and E. Shihab, ‘‘Characterizing and predicting blocking
bugs in open source projects,’’ in Proc. 11th Work. Conf. Mining Softw.
Repositories. Washington, DC, USA: IEEE Computer Society, 2014,
pp. 72–81.

[62] M. J. Siers and M. Z. Islam, ‘‘Software defect prediction using a cost
sensitive decision forest and voting, and a potential solution to the
class imbalance problem,’’ Inf. Syst., vol. 51, pp. 62–71, Jul. 2015, doi:
10.1016/j.is.2015.02.006.

[63] I. Alazzam, I. Alsmadi, and M. Akour, ‘‘Software fault proneness
prediction: A comparative study between bagging, boosting, and stacking
ensemble and base learner methods,’’ Int. J. Data Anal. Techn. Strategies,
vol. 9, no. 1, p. 1, 2017, doi: 10.1504/ijdats.2017.10003991.

[64] D. R. Ibrahim, R. Ghnemat, and A. Hudaib, ‘‘Software defect prediction
using feature selection and random forest algorithm,’’ in Proc. Int.
Conf. New Trends Comput. Sci. (ICTCS), Oct. 2017, pp. 252–257, doi:
10.1109/ictcs.2017.39.

[65] D. Bowes, T. Hall, and J. Petrić, ‘‘Software defect prediction: Do different
classifiers find the same defects?’’ Softw. Qual. J., vol. 26, no. 2,
pp. 525–552, 2017, doi: 10.1007/s11219-016-9353-3.

[66] S. Young, T. Abdou, andA. Bener, ‘‘A replication study: Just-in-time defect
prediction with ensemble learning,’’ in Proc. IEEE/ACM 6th Int. Workshop
Realizing Artif. Intell. Synergies Softw. Eng. (RAISE), May/Jun. 2018,
pp. 42–47.

[67] R. Li, L. Zhou, S. Zhang, H. Liu, X. Huang, and Z. Sun, ‘‘Software defect
prediction based on ensemble learning,’’ in Proc. 2nd Int. Conf. Data Sci.
Inf. Technol. (DSIT), Jul. 2019, pp. 1–6, doi: 10.1145/3352411.3352412.

[68] F. Yucalar, A. Ozcift, E. Borandag, and D. Kilinc, ‘‘Multiple-classifiers in
software quality engineering: Combining predictors to improve software
fault prediction ability,’’ Eng. Sci. Technol., Int. J., vol. 23, no. 4,
pp. 938–950, Aug. 2020, doi: 10.1016/j.jestch.2019.10.005.

[69] H. Aljamaan and A. Alazba, ‘‘Software defect prediction using tree-based
ensembles,’’ in Proc. 16th ACM Int. Conf. Predictive Models Data Anal.
Softw. Eng. (PROMISE). New York, NY, USA: Association for Computing
Machinery, Nov. 2020, pp. 1–10, doi: 10.1145/3416508.3417114.

[70] L. Goel, M. Sharma, S. K. Khatri, and D. Damodaran, ‘‘Defect prediction
of cross projects using PCA and ensemble learning approach,’’ in
Micro-Electronics and Telecommunication Engineering Lecture Notes in
Networks and Systems, vol. 106, D. Sharma, V. Balas, L. Son, R. Sharma,
and K. Cengiz, Eds. Singapore: Springer, 2020, doi: 10.1007/978-981-15-
2329-8_31.

[71] A. A. Ansari, A. Iqbal, and B. Sahoo, ‘‘Heterogeneous defect prediction
using ensemble learning technique,’’ in Artificial Intelligence and Evo-
lutionary Computations in Engineering Systems (Advances in Intelligent
Systems and Computing), vol. 1056, S. Dash, C. Lakshmi, S. Das, and
B. Panigrahi, Eds. Singapore: Springer, 2020, doi: 10.1007/978-981-15-
0199-9_25.

[72] A. O. Balogun, F. B. Lafenwa-Balogun, H. A. Mojeed, V. E. Adeyemo,
O. N. Akande, A. G. Akintola, A. O. Bajeh, and F. E. Usman-Hamza,
‘‘SMOTE-based homogeneous ensemble methods for software defect
prediction,’’ in Computational Science and Its Applications—ICCSA 2020
(Lecture Notes in Computer Science), vol. 12254, O. Gervasi et al., Eds.
Cham, Switzerland: Springer, 2020, doi: 10.1007/978-3-030-58817-5_45.

[73] S. S. Rathore and S. Kumar, ‘‘An empirical study of ensemble techniques
for software fault prediction,’’ Int. J. Speech Technol., vol. 51, no. 6,
pp. 3615–3644, Jun. 2021, doi: 10.1007/s10489-020-01935-6.

[74] S.Mehta andK. S. Patnaik, ‘‘Improved prediction of software defects using
ensemble machine learning techniques,’’ Neural Comput. Appl., pp. 1–12,
Mar. 2021, doi: 10.1007/s00521-021-05811-3.

[75] H. Femmer, D. M. Fernández, S. Wagner, and S. Eder, ‘‘Rapid quality
assurance with requirements smells,’’ J. Syst. Softw., vol. 123, pp. 190–213,
Jan. 2017, doi: 10.1016/j.jss.2016.02.047.

[76] A. Qazi, R. G. Raj, G. Hardaker, and C. Standing, ‘‘A systematic
literature review on opinion types and sentiment analysis techniques: Tasks
and challenges,’’ Internet Res., vol. 27, no. 3, pp. 608–630, 2017, doi:
10.1108/IntR-04-2016-0086.

[77] A. Qazi, F. Hussain, N. A. Rahim, G. Hardaker, D. Alghazzawi,
K. Shaban, and K. Haruna, ‘‘Towards sustainable energy: A systematic
review of renewable energy sources, technologies, and public opin-
ions,’’ IEEE Access, vol. 7, pp. 63837–63851, 2019, doi: 10.1109/
ACCESS.2019.2906402.

FASEEHA MATLOOB received the M.S. degree in computer science from
the Virtual University of Pakistan with a focus on software engineering. Her
research interests include software engineering and data mining.

TAHER M. GHAZAL (Member, IEEE) received
the B.Sc. degree in software engineering from
Al Ain University, in 2011, the M.Sc. degree
in information technology management from The
British University in Dubai, in 2013, associated
with The University of Manchester and The
University of Edinburgh, and the Ph.D. degree in
IT/software engineering from Damascus Univer-
sity, in 2019. He is currently pursuing the Ph.D.
degree in information science and technology

from Universiti Kebangsaan Malaysia. He served in engineering, computer
science, ICT, and head of stem and innovation departments, and involved in
quality assurance, accreditation, and data analysis, in several governmental
and private educational institutions under KHDA, Ministry of Education,
and the Ministry of Higher Education and Scientific Research, United Arab
Emirates. He has more than ten years of extensive and diverse experience
as an instructor, a tutor, a researcher, a teacher, an IT support/specialist
engineer, and a business/systems analyst. His research interests include the
IoT, IT, artificial intelligence, information systems, software engineering,
Web developing, building information, modeling, quality of education,
management, big data, quality of software, and project management. He is
also actively involved in community services in the projects and research
field.

98770 VOLUME 9, 2021

http://dx.doi.org/10.1109/icsme.2017.19
http://dx.doi.org/10.1145/2811681.2811699
http://dx.doi.org/10.1007/978-3-319-57141-6_39
http://dx.doi.org/10.1007/978-3-030-03146-6_44
http://dx.doi.org/10.1109/tsmcc.2012.2226152
http://dx.doi.org/10.1109/tr.2013.2259203
http://dx.doi.org/10.1007/978-3-030-00211-4_2
http://dx.doi.org/10.1007/s10515-015-0179-1
http://dx.doi.org/10.1007/s11219-016-9342-6
http://dx.doi.org/10.1016/j.neucom.2011.08.040
http://dx.doi.org/10.1109/tsmcc.2011.2161285
http://dx.doi.org/10.1016/j.infsof.2014.12.006
http://dx.doi.org/10.1016/j.is.2015.02.006
http://dx.doi.org/10.1504/ijdats.2017.10003991
http://dx.doi.org/10.1109/ictcs.2017.39
http://dx.doi.org/10.1007/s11219-016-9353-3
http://dx.doi.org/10.1145/3352411.3352412
http://dx.doi.org/10.1016/j.jestch.2019.10.005
http://dx.doi.org/10.1145/3416508.3417114
http://dx.doi.org/10.1007/978-981-15-2329-8_31
http://dx.doi.org/10.1007/978-981-15-2329-8_31
http://dx.doi.org/10.1007/978-981-15-0199-9_25
http://dx.doi.org/10.1007/978-981-15-0199-9_25
http://dx.doi.org/10.1007/978-3-030-58817-5_45
http://dx.doi.org/10.1007/s10489-020-01935-6
http://dx.doi.org/10.1007/s00521-021-05811-3
http://dx.doi.org/10.1016/j.jss.2016.02.047
http://dx.doi.org/10.1108/IntR-04-2016-0086
http://dx.doi.org/10.1109/ACCESS.2019.2906402
http://dx.doi.org/10.1109/ACCESS.2019.2906402


F. Matloob et al.: Software Defect Prediction Using Ensemble Learning

NASSER TALEB received the M.Sc. degree in
computer science from Minnesota State Univer-
sity, USA, in 1991, and the Ph.D. degree in IT from
Salford University, U.K., in 2005. He has 25 years
of teaching experience in the field of informa-
tion technology management with the Faculty
of Management, Canadian University Dubai, and
research experience with Ajman University and Al
Ain University. His most recent publication is the
Technology Education Management Informatics

Journal. His current research interests include blockchain and bitcoin
cryptocurrency technology, cloud computing, and big data. He served as the
Deputy Dean of the College of Business, Al Ain University.

SHABIB AFTAB received the M.S. degree in
computer science from the COMSATS Institute of
Information Technology, Lahore, Pakistan, and the
M.Sc. degree in information technology from the
Punjab University College of Information Tech-
nology (PUCIT) Lahore. He is currently pursuing
the Ph.D. degree in computer science with the
National College of Business Administration &
Economics. He is also serving as a Lecturer in
computer science with the Virtual University of

Pakistan. His research interests include data mining and software process
improvement.

MUNIR AHMAD (Member, IEEE) received the
Master of Computer Science degree from the
Virtual University of Pakistan, in 2018. He is
currently pursuing the Ph.D. degree with the
School of Computer Science, National College of
Business Administration & Economics. He has
spent several years in industry. He is also working
as an Executive Director or the Head of IT
Department, United International Group, Lahore,
Pakistan. He has vast experience in data manage-

ment and efficient utilization of resources at multinational organizations.
He has conductedmany research studies on sentiment analysis and utilization
of AI for prediction on various healthcare issues. His research interests
include data mining, big data, and artificial intelligence.

MUHAMMAD ADNAN KHAN received the B.S.
and M.Phil. degrees from International Islamic
University, Islamabad, Pakistan, and the Ph.D.
degree from ISRA University, Islamabad, in 2016.
He is currently working as an Assistant Profes-
sor with the Pattern Recognition and Machine
Learning Laboratory, Department of Software,
Gachon University, Republic of Korea. Before
joining Gachon University, he worked in various
academic and industrial roles in Pakistan. He has

been teaching graduate and undergraduate students in computer science
and engineering for the past 12 years. He is also guiding five Ph.D. and
seven M.Phil. students. He has published more than 190 research articles
with Cumulative JCR-IF and more than 240 in international journals and
reputed international conferences. His research interests include machine
learning, MUD, image processing and medical diagnosis, and channel
estimation in multi-carrier communication systems using soft computing.
He received scholarship awards from the Punjab Information Technology
Board, Government of Punjab, Pakistan, for his B.S. andM.Phil. degrees, and
the Higher Education Commission, Islamabad, for his Ph.D. degree, in 2016.

SAGHEER ABBAS received the M.Phil. degree
in computer science from the School of Com-
puter Science, NCBA&E, Lahore, Pakistan, and
the Ph.D. degree from the School of Computer
Science, NCBA&E, in 2016. He is currently
working as an Associate Professor with the School
of Computer Science, NCBA&E. He has been
teaching graduate and undergraduate students in
computer science and engineering for the past
eight years. He has published about 48 research

articles in international journals and reputed international conferences. His
research interests include cloud computing, the IoT, intelligent agents,
image processing, and cognitive machines, with various publications in
international journals and conferences.

TARIQ RAHIM SOOMRO (Senior Member,
IEEE) received the B.Sc. (Hons.) and M.Sc.
degrees in computer science from the University of
Sindh, Jamshoro, Pakistan, and the Ph.D. degree in
computer applications from Zhejiang University,
Hangzhou, China. He is currently a Professor of
computer science, the Dean of the College of
Computer Science and Information Systems, and
an Acting Rector with the Institute of Business
Management (IoBM). He has more than 27 years

of extensive and diverse experience as an administrator, a computer
programmer, a researcher, and a teacher. As an administrator, he served as a
coordinator, the head of the department, the head of the faculty, the dean of
the faculty, the head of the academic affairs, an acting rector, and has wide
experience in accreditation related matters, including ABET, HEC Pakistan,
and the Ministry of Higher Education and Scientific Research, United Arab
Emirates (UAE). He is also an IEEE Computer Society Distinguished Visitor
(2021–2023). He is a member of the Task Force on Arabic Script IDNs by the
Middle East Strategy Working Group (MESWG) of ICANN. He has been a
member of the Project Management Institute (PMI), since 2007, and ACM,
since 2019. He has been a Senior Member of the IEEE Computer Society
and the IEEE Geosciences and RS Society, since 2005, and the International
Association of the Computer Science and Information Technology (IACSIT),
since 2012. He has been a Life Member of the Computer Society of
Pakistan (CSP), since 1999, and a Global Member of the Internet Society
(ISOC), USA, since 2006. He has been an Active Member of the IEEE
Karachi Section (Region 10). He is also serving as the member of the
Executive Committee (ExCom) (2017–2021), the IEEE R10 Southern Area
Coordinator Computer Society (2020–2021), and the IEEE R10 Education
Activity Committee (EAC) (2021–2022). He received the ISOC Fellowship
to the IETF for the 68th Internet Engineering Task Force (IETF) Meeting.
He served as the Secretary for the Karachi Section (2018–2019), the Chair for
the GOLD Affinity Group, a member for the Executive Committee, in 2014,
and a branch councilor (2002 & 2016). He is also serving as the Vice-Chair
Karachi Section (2020–2021).

VOLUME 9, 2021 98771


