Skip to main content
Log in

Assessment of Nano-Imprinting Process in CuZr Amorphous Films Through Combination of Machine Learning and Molecular Dynamics

Journal of Electronic Materials Aims and scope Submit manuscript

Cite this article

Abstract

The current study aimed to establish a machine learning (ML) framework to predict key parameters, namely the degree of strain localization (φ), elastic recovery (Erec), and maximum force needed (Fmax), in the nano-imprinting process of CuZr metallic glasses (MGs). The ML model incorporated both structural features and imprinting process parameters as inputs. An extreme learning procedure was employed to develop the ML model, resulting in rapid data convergence, a short computational training time, and high predictive performance. Regression analysis demonstrated that the ML model achieved impressive predictive accuracy, with R2 coefficient values of 0.976, 0.959, and 0.971 for φ, Erec, and Fmax, respectively. The findings indicated that the prediction of φ and Fmax heavily relied on inputs related to structural defects, such as free volume, while Erec prediction was primarily influenced by inputs describing densely packed regions within the MGs. Additionally, the imprinting temperature and rate of filling displacement were identified as crucial factors in predicting the output targets. Consequently, the proposed ML model is believed to serve as a promising tool for predicting and characterizing output parameters that determine the feasibility and quality of the nano-imprinting process in MGs. In summary, this study successfully developed an ML framework that integrates structural features and process parameters to accurately predict important outcomes in the nano-imprinting of CuZr metallic glasses. The proposed model has the potential to enhance the understanding and optimization of the nano-imprinting process, contributing to advancements in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Arab Emirates)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. N.A.C. Lah, Tunable functionality of pure nano Cu-and Cu-based oxide flexible conductive thin film with superior surface modification. Surf. Interfaces 38, 102819 (2023).

    CAS  Google Scholar 

  2. Z. Xu and X. Jiang, Osteogenic TiO2 composite nano-porous arrays: a favorable platform based on titanium alloys applied in artificial implants. Colloids Surf. A Physicochem. Eng. Asp. 640, 128301 (2022).

    CAS  Google Scholar 

  3. F. Selimefendigil and C. Şirin, Energy and exergy analysis of a hybrid photovoltaic/thermal-air collector modified with nano-enhanced latent heat thermal energy storage unit. J. Energy Storage 45, 103467 (2022).

    Google Scholar 

  4. J.H. Cho, D. Cayll, D. Behera, and M. Cullinan, Towards repeatable, scalable graphene integrated micro-nano electromechanical systems (MEMS/NEMS). Micromachines 13, 27 (2022).

    Google Scholar 

  5. J. Sun, J. Zhao, Y. Chen, L. Wang, X. Yun, and Z. Huang, Macro-micro-nano multistage toughening in nano-laminated graphene ceramic composites. Mater. Today Phys. 22, 100595 (2022).

    CAS  Google Scholar 

  6. N. Lu, M. Zhang, X. Jing, P. Zhang, Y. Zhu, and Z. Zhang, Electrospun semiconductor-based nano-heterostructures for photocatalytic energy conversion and environmental remediation: opportunities and challenges. Energy Environ. Mater. 6, e12338 (2023).

    CAS  Google Scholar 

  7. H. Zhao, X. Cao, Q. Dong, C. Song, L. Wang, and L. Gao, Large-area silicon photonic crystal supporting bound states in the continuum and optical sensing formed by nanoimprint lithography. Nanoscale Adv. 5, 1291 (2023).

    CAS  Google Scholar 

  8. A. Garg, E. Mejia, W. Nam, M. Nie, W. Wang, P. Vikesland, and W. Zhou, Microporous multiresonant plasmonic meshes by hierarchical micro-nanoimprinting for bio-interfaced SERS imaging and nonlinear nano-optics. Small 18, 2106887 (2022).

    CAS  Google Scholar 

  9. M. Nakagawa, Micro-print and nano-imprint methods combining laser-drilled screen printing and ultraviolet nanoimprint lithography: a review. Jpn. J. Appl. Phys. 61, SD0805 (2022).

    Google Scholar 

  10. T. Alizadeh and S.Z. Karimi, A novel enzyme-less uric acid voltammetric sensor based on highly selective nano-imprinted polymer synthesized utilizing [tetrabutyl ammonium]+-[urate]− ion-pair complex as template. Microchem. J. 183, 108095 (2022).

    CAS  Google Scholar 

  11. P. Braun, P. Grützmacher, L. Frohnapfel, F. Mücklich, and K. Durst, Nanoscale patterning of metallic surfaces with laser patterned tools using a nanoimprinting approach. Appl. Surf. Sci. 613, 155786 (2023).

    CAS  Google Scholar 

  12. B. Zhang, H. Yang, C. Pan, and P. Zhao, Joint process of laser shock polishing and imprinting for metallic nanostructure fabrication. Mater. Des. 227, 111743 (2023).

    CAS  Google Scholar 

  13. Z. Chen, A. Datye, G.H. Simon, C. Zhou, S.A. Kube, N. Liu, J. Liu, J. Schroers, and U.D. Schwarz, Atomic-scale imprinting by sputter deposition of amorphous metallic films. ACS Appl. Mater. Interfaces 12, 52908 (2020).

    CAS  Google Scholar 

  14. L. Xiaoyu, P. Sharma, Y. Zhang, A. Makino, and H. Kato, Nano-imprinting potential of magnetic FeCo-based metallic glass. Nanotechnology 30, 305302 (2019).

    CAS  Google Scholar 

  15. R. Li, Z. Chen, A. Datye, G.H. Simon, J. Ketkaew, E. Kinser, Z. Liu, C. Zhou, O.E. Dagdeviren, S. Sohn, J.P. Singer, C.O. Osuji, J. Schroers, and U.D. Schwarz, Atomic imprinting into metallic glasses. Commun. Phys. 1, 75 (2018).

    Google Scholar 

  16. X. Liang, P. Sharma, Y. Zhang, and H. Kato, Nanoimprinting of magnetic FeCo-based metallic glass thin films. J. Magn. Magn. Mater. 542, 168455 (2022).

    CAS  Google Scholar 

  17. M. Li, W. Luo, J. Xu, J. Zhang, K.W. Ng, and X. Cheng, Fabrication and oxidation of amorphous Zr-based alloy for imprint lithography. Microelectron. Eng. 256, 111722 (2022).

    CAS  Google Scholar 

  18. X. Liu, J.-L. Gu, G.-N. Yang, Y. Shao, N. Chen, and K.-F. Yao, Theoretical and experimental study of metallic glass die-imprinting for manufacturing large-size micro/nano structures. J. Mater. Process. Technol. 307, 117699 (2022).

    CAS  Google Scholar 

  19. P.-J. Chen and C.-H. Hsueh, Imprintable Au-based thin-film metallic glasses with different crystallinities for surface-enhanced Raman scattering. J. Phys. Chem. C 125, 23983 (2021).

    CAS  Google Scholar 

  20. C. Wang, L.-W. Nien, H.-C. Ho, Y.-C. Lai, and C.-H. Hsueh, Surface plasmon excited on imprintable thin-film metallic glasses for surface-enhanced Raman scattering applications. ACS Appl. Nano Mater. 1, 908 (2018).

    CAS  Google Scholar 

  21. Z. Chen, Y. Xie, A. Datye, J. Thornton, J. Schroers, J.J. Cha, and U.D. Schwarz, Angstrom-scale replication of surfaces with crystallized bulk metallic glasses. Mater. Today Nano 16, 100145 (2021).

    CAS  Google Scholar 

  22. A.-S. Tran, D.-Q. Doan, and V.-T. Chu, Molecular simulation study on mechanical properties and elastic recovery of nanoimprinted CuAgAu metallic glasses. J. Non. Cryst. Solids 596, 121861 (2022).

    CAS  Google Scholar 

  23. T.W.B. Riyadi, R. Sivaraman, A.M.H. Wais, F.M.A. Altalbawy, U.O. Khudanov, and D.K. Chaudhary, Mechanism of imprinting process in the Ni-P metallic glass films: a molecular dynamics study. Adv. Mater. Sci. Eng. 2023, 6232579 (2023).

    Google Scholar 

  24. C.-D. Wu and R.-E. Li, Effects of alloy composition, cavity aspect ratio, and temperature of imprinted ZrCu metallic glass films: a molecular dynamics study. Appl. Phys. A 126, 209 (2020).

    CAS  Google Scholar 

  25. D.-Q. Doan, T.-H. Fang, A.-S. Tran, and T.-H. Chen, Residual stress and elastic recovery of imprinted Cu-Zr metallic glass films using molecular dynamic simulation. Comput. Mater. Sci. 170, 109162 (2019).

    CAS  Google Scholar 

  26. C.-D. Wu and C.-J. Hou, Molecular dynamics analysis of plastic deformation and mechanics of imprinted metallic glass films. Comput. Mater. Sci. 144, 248 (2018).

    CAS  Google Scholar 

  27. M. Samavatian, R. Gholamipour, and V. Samavatian, Discovery of novel quaternary bulk metallic glasses using a developed correlation-based neural network approach. Comput. Mater. Sci. 186, 110025 (2021).

    CAS  Google Scholar 

  28. Y. Wu, B. Xu, X. Zhang, and P. Guan, Machine-learning inspired density-fluctuation model of local structural instability in metallic glasses. Acta Mater. 247, 118741 (2023).

    CAS  Google Scholar 

  29. J.Q. Wu, H.P. Zhang, Y.F. He, and M.Z. Li, Unsupervised machine learning study on structural signature of glass transition in metallic glass-forming liquids. Acta Mater. 245, 118608 (2023).

    CAS  Google Scholar 

  30. L. Yu, X. Guo, G. Wang, B. Sun, D. Han, C. Chen, J. Ren, and W. Wang, Extracting governing system for the plastic deformation of metallic glasses using machine learning. Sci. China Phys. Mech. Astron. 65, 264611 (2022).

    CAS  Google Scholar 

  31. M. Samavatian, R. Gholamipour, D.O. Bokov, W. Suksatan, V. Samavatian, and M. Mahmoodan, Characterization of nanoscale structural heterogeneity in metallic glasses: a machine learning study. J. Non. Cryst. Solids 578, 121344 (2022).

    CAS  Google Scholar 

  32. R. Gao, X. Hui, H.Z. Fang, X.J. Liu, G.L. Chen, and Z.K. Liu, Structural characterization of Mg65Cu25Y10 metallic glass from ab initio molecular dynamics. Comput. Mater. Sci. 44, 802 (2008).

    CAS  Google Scholar 

  33. Z. Fan, J. Ding, and E. Ma, Machine learning bridges local static structure with multiple properties in metallic glasses. Mater. Today 40, 48 (2020).

    CAS  Google Scholar 

  34. F. Li, X.J. Liu, H.Y. Hou, G. Chen, G.L. Chen, and M. Li, Atomic scale calculation of the free volume in Zr2Ni metallic glass. Intermetallics 17, 98 (2009).

    CAS  Google Scholar 

  35. T. Çağin, Y. Kimura, Y. Qi, H. Li, H. Ikeda, W.L. Johnsonb, and W.A. Goddard, Calculation of mechanical, thermodynamic and transport properties of metallic glass formers. MRS Online Proc. Libr. 554, 43 (1998).

    Google Scholar 

  36. N. Wang, J. Ding, F. Yan, M. Asta, R.O. Ritchie, and L. Li, Spatial correlation of elastic heterogeneity tunes the deformation behavior of metallic glasses. NPJ Comput. Mater. 4, 19 (2018).

    Google Scholar 

  37. Y.C. Hu, F.X. Li, M.Z. Li, H.Y. Bai, and W.H. Wang, Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids. Nat. Commun. 6, 8310 (2015).

    CAS  Google Scholar 

  38. W.-P. Wu, D. Şopu, X. Yuan, and J. Eckert, Aspect ratio-dependent nanoindentation behavior of Cu64Zr36 metallic glass nanopillars investigated by molecular dynamics simulations. J. Appl. Phys. 128, 84303 (2020).

    CAS  Google Scholar 

  39. T. Salimans and D. P. Kingma, Weight normalization: a simple reparameterization to accelerate training of deep neural networks, in Advances in Neural Information Processing System 29 (2016).

  40. G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, Self-normalizing neural networks, in Advances in Neural Information Processing System 30 (2017).

  41. V. Samavatian, M. Fotuhi-Firuzabad, M. Samavatian, P. Dehghanian, and F. Blaabjerg, Iterative machine learning-aided framework bridges between fatigue and creep damages in solder interconnections. IEEE Trans. Compon. Packag. Manuf. Technol. 12, 349 (2022).

    CAS  Google Scholar 

  42. S.R. Salimbahrami and R. Shakeri, Experimental investigation and comparative machine-learning prediction of compressive strength of recycled aggregate concrete. Soft Comput. 25, 919 (2021).

    Google Scholar 

  43. Y.J. Soofi, Y. Gu, and J. Liu, An adaptive physics-based feature engineering approach for machine learning-assisted alloy discovery. Comput. Mater. Sci. 226, 112248 (2023).

    CAS  Google Scholar 

  44. F. Chen, L. Weng, J. Wang, P. Wu, D. Ma, F. Pan, and P. Ding, An adaptive framework to accelerate optimization of high flame retardant composites using machine learning. Compos. Sci. Technol. 231, 109818 (2023).

    Google Scholar 

  45. S. Xiang, Y. Qin, J. Luo, F. Wu, and K. Gryllias, A concise self-adapting deep learning network for machine remaining useful life prediction. Mech. Syst. Signal Process. 191, 110187 (2023).

    Google Scholar 

  46. S. Chen, A. Wulamu, Q. Zou, H. Zheng, L. Wen, X. Guo, H. Chen, T. Zhang, and Y. Zhang, MD-GNN: a mechanism-data-driven graph neural network for molecular properties prediction and new material discovery. J. Mol. Graph. Model. 123, 108506 (2023).

    CAS  Google Scholar 

  47. J. Yang, F. Yang, Y. Zhou, D. Wang, R. Li, G. Wang, and W. Chen, A data-driven structural damage detection framework based on parallel convolutional neural network and bidirectional gated recurrent unit. Inf. Sci. 566, 103 (2021).

    Google Scholar 

  48. O. Kisi and M. Alizamir, Modelling reference evapotranspiration using a new wavelet conjunction heuristic method: wavelet extreme learning machine vs wavelet neural networks. Agric. For. Meteorol. 263, 41 (2018).

    Google Scholar 

  49. B. Zhu, Y. Feng, D. Gong, S. Jiang, L. Zhao, and N. Cui, Hybrid particle swarm optimization with extreme learning machine for daily reference evapotranspiration prediction from limited climatic data. Comput. Electron. Agric. 173, 105430 (2020).

    Google Scholar 

  50. S. Boriratrit, S. Chiewchanwattana, K. Sunat, P. Musikawan, and P. Horata, Improvement flower pollination extreme learning machine based on meta-learning, (2016), https://doi.org/10.1109/JCSSE.2016.7748871

  51. X. Fan, Y. Liu, Q. Guo, W. Tian, and Z. Yuan, A double-loop relevant vector machine-based system reliability analysis method with Meta-IS idea and active learning strategy. Probab. Eng. Mech. 71, 103398 (2023).

    Google Scholar 

  52. S. Liao and C. Feng, Meta-ELM: ELM with ELM hidden nodes. Neurocomputing 128, 81 (2014).

    Google Scholar 

  53. S. Boriratrit, P. Fuangfoo, C. Srithapon, and R. Chatthaworn, Adaptive meta-learning extreme learning machine with golden eagle optimization and logistic map for forecasting the incomplete data of solar irradiance. Energy AI 13, 100243 (2023).

    Google Scholar 

  54. M. Dehghani, E. Trojovská, and T. Zuščák, A new human-inspired metaheuristic algorithm for solving optimization problems based on mimicking sewing training. Sci. Rep. 12, 17387 (2022).

    CAS  Google Scholar 

  55. D. Wei, J. Yang, M.-Q. Jiang, B.-C. Wei, Y.-J. Wang, and L.-H. Dai, Revisiting the structure–property relationship of metallic glasses: common spatial correlation revealed as a hidden rule. Phys. Rev. B 99, 14115 (2019).

    CAS  Google Scholar 

  56. X. Mu, M.R. Chellali, E. Boltynjuk, D. Gunderov, R.Z. Valiev, H. Hahn, C. Kübel, Y. Ivanisenko, and L. Velasco, Unveiling the local atomic arrangements in the shear band regions of metallic glass. Adv. Mater. 33, 2007267 (2021).

    CAS  Google Scholar 

  57. K.M. Flores and R.H. Dauskardt, Mean stress effects on flow localization and failure in a bulk metallic glass. Acta Mater. 49, 2527 (2001).

    CAS  Google Scholar 

  58. S.M. Song, Y.C. Liao, T.H. Li, C.K. Lee, P.H. Tsai, J.S.C. Jang, and J.C. Huang, Thermoplastic deformation behavior of a Fe-based bulk metallic glass within the supercooled liquid region. J. Mater. Res. Technol. 8, 1907 (2019).

    CAS  Google Scholar 

  59. J. Dong, Y.-H. Feng, Y. Huan, J. Yi, W.-H. Wang, H.-Y. Bai, and B.-A. Sun, Rejuvenation in hot-drawn micrometer metallic glassy wires. Chin. Phys. Lett. 37, 17103 (2020).

    CAS  Google Scholar 

  60. J. Pan, Y.P. Ivanov, W.H. Zhou, Y. Li, and A.L. Greer, Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass. Nature 578, 559 (2020).

    CAS  Google Scholar 

  61. A. Bhattacharyya, G. Singh, K.E. Prasad, R. Narasimhan, and U. Ramamurty, On the strain rate sensitivity of plastic flow in metallic glasses. Mater. Sci. Eng. A 625, 245 (2015).

    CAS  Google Scholar 

  62. S.-H. Joo, D.-H. Pi, A.D.H. Setyawan, H. Kato, M. Janecek, Y.C. Kim, S. Lee, and H.S. Kim, Work-hardening induced tensile ductility of bulk metallic glasses via high-pressure torsion. Sci. Rep. 5, 1 (2015).

    Google Scholar 

  63. J. Lu, G. Ravichandran, and W.L. Johnson, Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 51, 3429 (2003).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biju Theruvil Sayed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayed, B.T., Al-Sakhnini, M.M., Alzubaidi, A. et al. Assessment of Nano-Imprinting Process in CuZr Amorphous Films Through Combination of Machine Learning and Molecular Dynamics. J. Electron. Mater. 52, 6943–6958 (2023). https://doi.org/10.1007/s11664-023-10630-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10630-4

Keywords

Navigation